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Abstract

Interpreting galaxy surveys in a cosmological context requires an accurate forward model

of large-scale structure. N-body simulations are the state-of-the-art tool for this but are

not without their challenges. For one, they are computationally expensive, demanding

large allocations of supercomputer time; for another, they are only as accurate as their

discrete particle representation of dark matter allows. In my dissertation, I address both

of these challenges. Abacus is a code for cosmological N-body simulations based on an

exact decomposition of the near-field and far-field force, making it exceptionally accurate

and fast. Using one dual-GPU node, Abacus can solve a supercomputer-sized N-body

problem many times faster than other codes while retaining orders-of-magnitude higher

force accuracy. We present a full description of the Abacus code, including discussion of

the combination of mathematical techniques, software implementation, and commodity

computer hardware that makes this possible.

Abacus’s accuracy has allowed us to identify and correct non-physical effects that

arise from the discrete N-body representation of dark matter. Using modified initial

conditions, we can suppress discreteness errors in the late-time matter power spectrum

by an order of magnitude, including effects that bias the outcome of linear perturbation

theory. We have released a suite of more than 150 across 40 cosmologies simulations

called “Abacus Cosmos” based upon these results. Finally, we develop a technique for

maximizing the reuse of N-body simulations by perturbatively changing the background
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cosmology of a simulation output. By focusing on high accuracy for small changes in

cosmology, the “warped” results are indistinguishable from a full N-body realization in

key analysis metrics like the galaxy power spectrum. Abacus will be transformative for

executing simulations of the size and fidelity required for analysis of surveys such as DESI,

Euclid, and WFIRST.
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Chapter 1

Introduction

1.1 The Concordance Model of Cosmology

In the last two decades, a “concordance cosmology” has emerged that describes a wealth

of extra-galactic observations with remarkable success. From the hot afterglow of the Big

Bang to the cosmic web of galaxies, the ΛCDM theory has successfully unified observa-

tions across cosmic time and space with only a handful of free parameters. Despite this

success, the theory invokes energy in two components—dark energy and dark matter—

whose fundamental natures are yet unknown. Indeed, 95% of the energy density of the

universe is thought to be “dark”—that is, having no known electromagnetic interactions—

with the remaining 5% in the form of ordinary “baryonic” matter (Planck Collaboration

et al. 2018).

The phenomenology of dark energy and dark matter is reasonably well understood,

however. Dark energy appears close to the “cosmological constant” of General Relativity

1



CHAPTER 1. INTRODUCTION

(GR, Einstein 1917): an extra source of cosmic acceleration arising from the vacuum

energy of empty space. Dark matter appears to behave as a cold, collisionless particle

species whose only interactions are gravitational. Neither of these explanations are on solid

theoretical footing, however. Consider dark energy: its energy density calculated under

the vacuum energy model of quantum field theory is too large by some 120 orders of

magnitude—a discrepancy that has been called “probably the worst theoretical prediction

in the history of physics” (Hobson et al. 2006). Many alternative models of dark energy

have been proposed in light of this discrepancy, and not all of them predict cosmological-

constant behavior. A common form is one in which the behavior of dark energy can

change with time, such as “quintessence” (Caldwell et al. 1998; see Copeland et al. 2006

for a review). Constraints on quintessence-like models are tightening, with recent results

constraining deviations from a cosmological constant to about 10% at 2-sigma in the

effective equation-of-state parameter w (Planck Collaboration et al. 2018). A detection

of a deviation of dark energy from a cosmological constant would be a tremendous stride

towards understanding its physical origin; indeed, controlling theoretical systematics from

galaxy surveys at the level necessary to make a robust claim of such a detection is a major

thrust of this thesis. But even in the absence of a positive detection, tightened constraints

on w will narrow the theoretical landscape and provide guidance for the next generation

of dark energy models (Weinberg et al. 2013).

Dark matter behaves as a cold, collisionless particle species; much like ordinary mat-

ter, it clusters gravitationally, but unlike ordinary matter, it does not radiate and cool

and thus cannot form the tightly bound clumps that we call “galaxies”. Instead, dark

matter forms quasi-spherical, dispersion-supported “halos” via gravitational collapse and

virial relaxation. These structures are sites of galaxy formation, with smaller halos host-

2



CHAPTER 1. INTRODUCTION

ing individual galaxies and larger halos hosting galaxy clusters. The interplay between

the formation and growth of dark matter halos and their resident galaxies is the domain

of the “galaxy-halo connection” (e.g. Kereš et al. 2005; Conroy & Wechsler 2009; Reddick

et al. 2013; see Wechsler & Tinker 2018 for a recent review). This gravitational link

between luminous and non-luminous matter is a key opportunity: by studying the distri-

bution of galaxies, we can learn about the distribution dark matter. The distribution of

dark matter, in turn, is tightly linked to the cosmology; this is the domain of “large-scale

structure”, which we will discuss in Section 1.2.

The dark matter halo model has had great success in describing observations from

galaxy surveys, and yet dark matter’s fundamental nature remains a mystery. A prepon-

derance of evidence suggests that it is non-baryonic and dynamic, in the sense that it can

move and cluster as opposed to being a static modification of GR. For example, gravita-

tional lensing cluster masses (Fischer & Tyson 1997; Bartelmann & Schneider 2001 for a

review) and galaxy rotation curves (e.g. Rubin et al. 1980; Brand & Blitz 1993) require

massive reservoirs of non-luminous matter; phenomena such as the CMB acoustic peaks

(Smoot et al. 1992; Spergel et al. 2003; Planck Collaboration et al. 2014) and, famously,

the Bullet Cluster (Markevitch et al. 2004) require that this matter be non-baryonic.

Common classes of theoretical dark matter models include WIMPs (weakly interacting

massive particles, e.g. Jungman et al. 1996), axions (e.g. Preskill et al. 1983), and primor-

dial black holes (e.g. Hut & Rees 1992; Carr et al. 2016), yet detection of any of these

classes remains elusive (and not for lack of trying). Observational tests for deviations of

dark matter’s behavior from that of a cold, collisionless species will continue to provide

key constraints that theoretical dark matter models must satisfy.

Despite its success, ΛCDM is still a relatively young theory: it was only placed on

3



CHAPTER 1. INTRODUCTION

solid observational ground 20 years ago with the supernovae observations of Riess et al.

and Perlmutter et al. in 1998 and 1999. The ensuing generation of ensuing CMB, BAO,

weak lensing, and supernova observations (the “Stage II” dark energy experiments, in the

taxonomy of the U.S. Department of Energy’s Dark Energy Task Force, Albrecht et al.

2006) confirmed this paradigm. The “Stage III” experiments that followed pushed ΛCDM

to its limits, most notably with the 4.4σ tension between the value of the Hubble constant

H0 inferred from type Ia supernovae in the local universe and that inferred from the CMB

with Planck (Riess et al. 2019). Similarly, weak lensing experiments consistently find a

lower amplitude of density fluctuations than CMB experiments, although the significance

and origin of this effect is still debated (Leauthaud et al. 2017; Abbott et al. 2018a). We

thus live in an exciting time for cosmology: ambitious“Stage IV”dark energy programs are

being planned and constructed (DESI, DESI Collaboration et al. 2016; WFIRST, Spergel

et al. 2015; Euclid, Laureijs et al. 2011; CMB-S4, Abazajian et al. 2016, among others)

and with this deluge of high-fidelity data must come high-fidelity theoretical models.

Generating such models for large-scale structure is the focus of this thesis.

1.2 Large-Scale Structure as a Probe of Cosmology

1.2.1 Overview

From the earliest days of extra-galactic studies, it has been known that galaxies are not

distributed randomly on the sky (c.f. Shapley’s 1933 studies with the Harvard College Ob-

servatory photographic plates; see Abell 1965; Bahcall 1977; Oort 1983; Geller & Huchra

1983 for more examples of early work). The defining feature is the clumpiness of the

4
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distribution: many galaxies live in clusters and groups thought to form at the intersection

of filaments (themselves the intersections of walls or “pancakes”, Zel’dovich 1970). In the

ΛCDM paradigm, this clustering arises from gravitational instability of tiny Gaussian

density fluctuations imprinted in the matter distribution at the epoch of recombination,

z ≈ 1100, or about 380,000 years after the Big Bang (Planck Collaboration et al. 2018).

These density fluctuations grow from an initial fractional amplitude of about 10−5 into

the rich “cosmic web” of structures observed today—the so-called “large-scale structure”

(LSS).

1.2.2 Growth of Structure and Redshift-Space Distortions

The growth of large-scale structure is a sensitive probe of the underlying cosmology. In

General Relativity, the scale factor a of the Friedmann-Lemâıtre-Robertson-Walker metric

describing the background expansion is linked to the amplitude of linear growth D(a) of

cold dark matter via the growth equation

d2D
dt2 + 2H

dD
dt

=
3ΩmH2

2
D. (1.1)

The cosmology enters implicitly through the Hubble factor H(a) = ȧ/a and explicitly

through the matter density parameter Ωm. For Ωm = 1, this has the familiar solution

D ∝ a, but in general this differential equation does not admit an analytic solution and its

time evolution will have characteristic scales imprinted by the cosmology. Thus, measuring

D as a function of redshift constrains cosmology.

Of course, one does not measure growth factors; in a traditional galaxy survey, one

measures galaxy angular position and redshift. To infer the growth of structure from the
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3D galaxy density field, one must thus infer a distance from the redshift1. The redshift

arises from a number of sources but primarily (i) the cosmological expansion and (ii) the

peculiar velocity of a galaxy relative to the Hubble flow. The latter is typically sourced

by random motions of a galaxy within a halo (“Finger of God”; Jackson 1972) or coherent

motions of matter draining out of voids and into over-dense regions (“Kaiser effect”; Kaiser

1987); these are collectively called “redshift-space distortions” (RSD).

While RSD is a contaminant in reconstructing the real-space density field, it also

contains cosmological information in its own right. This is unsurprising: if different

cosmologies predict different growth amplitudes, then so too must differ the velocities

that delivered the matter there. In particular, Kaiser RSD imprints an anisotropy in

the clustering of galaxies relative to the observer’s line of sight that probes the parameter

combination f (z)σ8(z), where f (z) = d lnD/d lna is the logarithmic growth rate and σ8 sets

the amplitude of linear power spectrum (Hamilton 1998; Percival & White 2009). RSD is

particularly interesting because it directly links an observable (redshift-space clustering)

with the background cosmology.

In practice, RSD is typically limited in its usefulness by systematic uncertainties

in small-scale clustering. Many analyses are thus restricted to quasi-linear regimes; for

example, the SDSS-III BOSS RSD analysis (Chuang et al. 2016) only considers scales

larger than 40h−1 Mpc. Better modeling in the non-linear regime will be needed to

take full advantage of the sub-percent constraints on f (z)σ8(z) that Stage-IV dark energy

experiments will provide. In terms of dark energy science, RSD is expected to improve the

1Projected and angular correlation functions/power spectra are one way to avoid this requirement but

are lossy compared to 3D measurements.
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errors in the DETF FoM2 by 10–15%(Weinberg et al. 2013), if theoretical modeling can

be improved to sub-percent accuracy in the mildly non-linear regime. Precision numerical

simulations will be an important part of this modeling which is one of the motivations for

the work in this thesis.

RSD has another important use: constraining “modified gravity” theories. These

theories appeal to a modification of GR to explain the apparent cosmic acceleration rather

than an extra source of energy density with a negative pressure; thus, the growth of cosmic

structure generically couples differently to the background expansion than it would in GR.

RSD is therefore expected to yield a different signature than that of ΛCDM for the same

expansion history (e.g. Wang 2008). This will be a key probe by which GR is tested in

the dark energy Stage-IV era (Weinberg et al. 2013).

1.2.3 Weak Lensing

Just as galaxy redshifts are distorted by the motion of large-scale structure, so also are

galaxy angular positions deflected by the mass. Matter along the line of sight to a galaxy

gravitationally lenses the emitted light such that the observed position and shape is dis-

torted. As with RSD, this may be viewed as a contaminant or an additional source of

information: the correlation of coherent galaxy shears over large scales “weighs” the lens-

ing structure along the line of sight (Gunn 1967; Kilbinger 2015 for a recent review). The

signal is quite weak and requires an exquisite understanding of instrumental effects and

intrinsic alignments (e.g Mandelbaum et al. 2005; Troxel & Ishak 2015) but is a power-

2Dark Energy Task Force Figure of Merit: the inverse of the area encompassed by the error ellipse in

the w0–wa plane.
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ful probe of cosmology; most recently, the Dark Energy Survey (a photometric imaging

survey, Abbott et al. 2018b) used it to constrain S8 = σ8(Ωm/0.3)0.5 to 3%. Furthermore,

weak lensing is sensitive to the combined Newtonian gravitational potential and relativis-

tic curvature of space; modified gravity models thus predict different behavior for weak

lensing than growth-of-structure probes that respond only to the gravitational potential

(Weinberg et al. 2013).

On the topic of weak lensing, it is worth mentioning its power as a tomographic probe

of LSS. In tomography, one measures structural properties as a function of redshift, usually

by dividing a nominal galaxy sample into multiple redshift bins. Measuring the redshift

evolution of the bins probes something more akin to the actual growth factor (Eq. 1.1)

than the velocity measurements of RSD or the angular diameter distance measurements

of BAO. See especially Hu (1999) and Hildebrandt et al. (2017) for recent measurements;

a similar method is possible with 21cm observations of neutral hydrogen at high redshift

(Madau et al. 1997; Morales & Wyithe 2010 for a review).

1.2.4 Halo and Galaxy Bias

Galaxies are useful tracers of the total matter density, as on large scales baryonic matter

follows the (gravitationally dominant) dark matter (e.g. Eisenstein & Hu 1998; Angulo

et al. 2013 for a numerical study). However, galaxies are not fair tracers of the dark

matter, in the sense that they preferentially inhabit dense regions and tend to avoid

voids. On large scales, this can be described to an excellent approximation with linear

bias: δg = bgmδm, where δg and δm are the overdensity fields of the galaxies and dark

matter, and bgm is the (linear) galaxy-matter bias. This approximation is not empirical
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but is actually an exact result of linear perturbation theory, making it a highly robust

description of large-scale clustering (Desjacques et al. 2018).

As with redshift-space distortions and lensing, galaxy bias is both a complication and

an opportunity. The astrophysical processes that govern galaxy formation and (small-

scale) clustering are substantially more complicated than the collisionless dark-matter

physics thought to govern large scales; thus, first-principles simulations of bias as a func-

tion of redshift and galaxy population are much more difficult than predictions for dark

matter clustering. However, the bias boosts the signal-to-noise ratio in large-scale studies,

which is very helpful for BAO analyses that need to identify a particular feature in the

linear clustering regime. Indeed, only 47,000 galaxies were needed for the original 3.4σ

BAO detection using massive, biased galaxies (Eisenstein et al. 2005). This signal boost

can be seen clearly in the well-known expressions for the two-point correlators of biased

tracers: Pg(k) = b2
gmPm(k) and ξg(r) = b2

gmξm(r) both receive an enhancement of b2
gm.

Looking forward, this signal boost will be key opportunity in the campaign to detect

the clustering of early galaxies in the redshift 8–10 universe. There, the extreme halo bias

values of 8–30 may lend itself to clustering detections with merely hundreds of objects

(Zhang et al. 2017).

The physical origin of bias may be considered through the formalism of the “peak-

background split” (Sheth & Tormen 1999). Fluctuations in the matter density may be

considered as the sum of a large-scale, smooth component and a small-scale, stochastic

component. A halo is considered to form when the total matter density in a region exceeds

a critical threshold. Halos will thus preferentially form in large patches where the smooth

component has enhanced the local density “floor”; clustering is therefore enhanced in
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high-density regions, but not in a directly proportional way; the critical density threshold

probes the non-linear tail of the Gaussian density excursion distribution—whence bias.

While galaxy bias generally is greater than one, it is entirely possible for a given

population to be less clustered than the dark matter. This would typically happen for a

low-mass tracer: in dense regions, the hierarchical assembly of clusters through mergers

will remove low-mass halos, carving out “no-go” regions for small halos, causing them to

be less clustered than the dark matter (e.g. Mansfield & Kravtsov 2019).

1.2.5 Baryon Acoustic Oscillations

Overdensities in the primordial plasma of the pre-recombination universe launch baryonic

sound waves known as the “baryon acoustic oscillations” (BAO, Eisenstein & Hu 1998).

These waves, supported by photon pressure, propagate until z∗ ≈ 1100, when the pressure

disappears due to the recombination of protons and electrons into neutral hydrogen. The

distance these sound waves travelled imprints a characteristic scale in the matter density:

the overdense regions that initially launched the waves will be surrounded by a ring of

likewise overdense material at the acoustic scale. As structure formation proceeds through

gravitational instability, galaxies will preferentially form at these sites of overdensity, and

thus an excess of low-redshift galaxy pairs can be observed at a separation corresponding

to the high-redshift acoustic scale. By using CMB observations to constrain the physical

acoustic scale, the BAO can thus be used as a standard ruler to infer the angular diameter

distance DA(z) to a low-redshift galaxy sample. In the redshift (line of sight) direction,

BAO probes the Hubble parameter H(z).

BAO is a remarkably robust technique. The physics that determine the acoustic scale
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are well understood, depending only on the integral

rs =
∫

∞

z∗

cs(z)
H(z)

dz, (1.2)

where cs(z) is the sound speed. The expansion history H(z) and sound speed are readily

determined by the ratios of matter, baryon, and radiation density; Planck has determined

this scale to 0.2% (Planck Collaboration et al. 2018). Furthermore, the sound waves are

relativistic, meaning they travel large comoving distances (∼ 150 Mpc) where the physics

of galaxy formation can cause no appreciable shift in the acoustic scale. Indeed, for any

effect to shift (and not just broaden) the acoustic scale, pairs of galaxies separated by

∼ 150 Mpc must “know” about each other. This is difficult even for non-linear gravita-

tional evolution, since the cosmic density variation smoothed on those scales is only 1%

(Weinberg et al. 2013). Perturbation theory predictions place the expected scale shift

at around 0.25% at z = 0 (e.g. Padmanabhan & White 2009); N-body simulations find a

similar effect (Seo et al. 2010).

The galaxy displacements that shift and broaden the acoustic peak are governed by

the large-scale gravitational potential. If one could measure this potential, one could

integrate the galaxies’ trajectories backwards to restore the sharp, unbiased acoustic peak

of the linear power spectrum. Indeed, with a galaxy survey one can do just that: since the

galaxies give an excellent guess as to the matter distribution, the potential under which

they move can be inferred. Even a one-step backwards integration using the Zel’dovich

Approximation (Zel’dovich 1970) gives a large reduction on the BAO distance error bar,

equivalent to increasing the survey volume by a factor of a few (Eisenstein et al. 2007;

Padmanabhan et al. 2012). This is due to both the removal of any scale shift and the

sharpening of the peak which enables better centroiding (Weinberg et al. 2013).
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However, the late-time potential field is not the correct field to use for reconstruction;

in the Lagrangian picture, one should use the initial potential. In other words, the initial

density field recovered with reconstruction does not self-consistently reproduce the final,

observed positions. But one does not observe a galaxy’s Lagrangian displacement, only

its Eulerian position. A whole class of techniques exist to deal with this complication

and the effects of RSD, biased tracers, and sparse sampling in real and Fourier space, in

two point and higher order statistics (e.g. Tassev & Zaldarriaga 2012; Burden et al. 2014;

Schmittfull et al. 2015; Seo et al. 2016; Zhu et al. 2017; Schmittfull et al. 2017; Hada &

Eisenstein 2018).

In addition to being astrophysically robust, BAO probes cosmology in a fundamen-

tally different way than CMB, SNe Ia, RSD, or WL. BAO is based on simple physics

(propagation of sound waves in a plasma, FLRW metric evolution, and gravitational in-

stability) and provides an absolute distance scale to the high-z universe (z & 0.5) not

well-probed by supernovae. Having multiple avenues by which to probe cosmology (all

with different systematic errors) is a key aspect of the modern dark energy campaign

(Albrecht et al. 2006; Weinberg et al. 2013). In a qualitative sense, BAO is a tremendous

validation for the concordance model of cosmology and the connection between the vastly

different regimes of the early universe and the cosmic web, separated by billions of years,

a factor of ∼ 1000 in scale factor, and factors of billions in density.
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1.3 N-body Simulations as a Modeling Tool for LSS

1.3.1 Overview

Large-scale structure has tremendous power for constraining cosmology; indeed, far more

potential power than the CMB. This can be seen from a simple“mode counting”argument:

due to its three-dimensional nature, the number of LSS modes grows as k3
max, while the

number of CMB modes on the two-dimensional surface of last-scattering grows as k2
max.

To the extent that modes are independent samples of the linear power spectrum, the

error bar thus shrinks with k3/2
max instead of with kmax. The trade-off is that physics of

the CMB is linear on all scales and thus its modeling can be nearly exact, while analytic

modeling of LSS breaks down even on quasi-linear scales. Improving this with better

standard perturbation theory (SPT) or effective field theory (EFT) is a highly active area

of research, but the data far outpace the theory on this front. For example, the Euclid

requirements for the simplest dark matter clustering statistic, the power spectrum, are

1% at k = 10h−1 Mpc (Schneider et al. 2016a); SPT presently reaches this level to about

0.1h Mpc−1; EFT roughly 0.5h Mpc−1 (e.g. Bernardeau et al. 2002; Foreman et al. 2016).

And this is before considering the complications of biased tracers in redshift space!

Fortunately, the physics of the cold, collisionless material thought to dominate the

ΛCDM matter budget is well understood, even if the emergent phenomena are not. Thus,

it is possible to attempt to model the clustering with first-principles simulations. The

primary technique in this vein is known as “N-body”, since it traces the evolution of

structure with a discrete sampling of the density field with N particles.

The task of N-body is to integrate the equations of motion of particles under mutual
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self-gravity (e.g. Efstathiou et al. 1985):

d2xi

dt2 + 2Hvi =− 1
a3

N

∑
j 6=i

Gm j
xi−x j

|xi−x j|3
, (1.3)

where xi and vi are the position and velocity of particle i in comoving coordinates (in which

the Hubble expansion is divided out). This is a massively coupled ODE, and for simu-

lations with billions or trillions of particles the challenge becomes clear: the right-hand

side of Eq. 1.3 naively requires evaluating all N(N−1)/2≈ 1018−24 pairwise interactions!

This is quite intractable. From a computational perspective, modern vectorized proces-

sors can execute O(1010) instructions per second, and a given computer node will have

∼ 20 processors which is approximately the same as the number of floating-point opera-

tions (FLOPs) per interaction. Thus if we allow each simulation time step to take 1000

seconds, we require at least O(105) nodes—an inordinate number. Graphics processing

units (GPUs) significantly reduce this hurdle, as they have approximately 100× more

cores than CPUs, but evaluating all pairwise interactions is still hugely inefficient (and

ignores periodic boundary conditions; see below). Most pairs occur at large separations,

but the exact details of distant mass distributions are relatively unimportant. Thus, tree,

multipole, or mesh methods are commonly used to approximate the far-field interactions.

We will discuss these in more detail below and then introduce our Abacus method in

Chapter 2.

Regardless of the force evaluation method, we need an integration technique to evolve

the particles forward in time. Most cosmological N-body codes use a variation of leapfrog

with sub-cycling inheriting from Quinn et al. (1997). Leapfrog is ubiquitous because it

is symplectic and accurate to second-order in the time step, even though it only requires

one force evaluation (compare with Euler’s method which also requires one force evalua-
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tion but is only first-order accurate). Force evaluation is relatively expensive in N-body

simulations, and most higher-order methods require storing intermediate data which is

prohibitive with billions of particles. However, N-body simulations do probe a large range

of densities and thus a large range of timescales, so most codes assign a time step or time-

step level to individual particles and do many smaller steps for a given global step—this

is the idea of sub-cycling. Effectively, the force is split into slowly varying and rapidly

varying components, with a different time step assigned to each. The exact implementa-

tions vary, notably with some preserving the symmetry of pairwise interactions (and thus

conserving momentum) and some not, but the potential performance gains are large.

The potential of N-body as a probe of gravitational dynamics has long been recog-

nized (e.g. Aarseth 1963; Aarseth et al. 1979; Efstathiou et al. 1985; Hockney & Eastwood

1988; Bertschinger & Gelb 1991; Aarseth 2003). Indeed, the earliest such simulation is

likely the analog experiment of Holmberg (1941) using light bulbs and photocells to mea-

sure gravitational interactions between galaxies—the 1/r2 gravitational force law being

replaced with the 1/r2 luminous flux, and the galaxies being represented by 37 light bulbs

each. In the 1980s, the famous simulations of the DEFW “Gang of Four” (Davis et al.

1985) provided the necessary theoretical framework in which to interpret the CfA Redshift

Survey’s observations of the cosmic web (Davis et al. 1982), thereby correctly inferring

the cold nature of the dark matter (and earning a Gruber Prize3 in the process).

Today’s cosmological simulations are designed for rigorous validation of galaxy survey

analysis and exploration of the growth of large-scale structure. This requires billions or

trillions of particles; notable early simulations in this regime include Millennium (Springel

3https://gruber.yale.edu/prize/2011-gruber-cosmology-prize
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et al. 2005) and Bolshoi (Klypin et al. 2011). Each of these has generated tremendous

legacy value from data products such as halo catalogs and merger trees. The current

and upcoming generation of simulations will feature 1011−13 particles (e.g. the 2 trillion

particle simulation of Potter et al. 2017 completed in support of Euclid); the aim of this

thesis is partly to make this goal computationally accessible, but more importantly to

lay the theoretical and computational groundwork for exquisite understanding of N-body

systematics and the way in which our simulations differ from the observed universe.

1.3.2 Initial Conditions

Initial conditions for N-body simulations can be computed from Lagrangian perturbation

theory (LPT; Zel’dovich 1970). The task of LPT is to produce a set of particle displace-

ments and velocities that self-consistently reproduce initial density power spectrum of the

universe while obeying the dynamics. The density power spectrum is well-predicted by

linear Boltzmann codes like CAMB (Lewis et al. 2000) or CLASS (Lesgourgues 2011).

At early enough times when density fluctuations are significantly below unity, LPT is an

excellent approximation. Thus, LPT can be used to “integrate” the dynamics from z = ∞

to zinit, at which point the N-body simulation can take over. We review the basics of LPT

in Appendix D.

Because the validity of LPT depends on the amplitude of density perturbations, the

choice of initial redshift depends on the particle mass (with smaller mass requiring higher

initial redshift for red-tilted power spectra). Typical initial redshifts are zinit ≈ 200 to

50, with 2nd-order LPT (2LPT) allowing a lower starting redshift than 1st-order LPT,

usually called the “Zel’dovich Approximation” (ZA; Zel’dovich 1970; Crocce et al. 2006).
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A lower starting redshift is also typically favorable for N-body codes that have difficulty

evolving the delicate, nearly-force-free initial state of particles, as this usually requires

precise cancellation of a near-field and far-field force. Furthermore, even an exact N-body

solver yields incorrect growth rates compared to the Vlasov solution, so a later starting

redshift is preferred to avoid build-up of this effect. This is the subject of Chapter 4.

The initial conditions are also simplified due to the assumption that dark matter

is “cold”; that is, has non-relativistic velocity at the time of decoupling. Relativistic,

fermionic dark matter such as neutrinos obeys a Fermi-Dirac momentum distribution, so

each point in space must be sampled by many particles with different velocities. This

leads to hugely increased shot noise, as the phase volume one needs to simulate is no

longer a 3D sheet but instead a 6D volume. Recently, a large amount of effort has gone

into suppressing this shot noise in N-body simulations with neutrinos (Emberson et al.

2017; Banerjee et al. 2018; Bird et al. 2018; Liu et al. 2018; Tram et al. 2019); fortunately

(from a computational prospective), CDM is still a good match to observational data, and

thus the velocity is single-valued initially at each point in space.

1.3.3 N-body Force Solvers

The biggest difference among N-body codes is in the force solvers—how they evaluate

Newtonian gravity at each time step. Explicit evaluation of all pairwise forces is pro-

hibitive, so several classes of techniques exist to reduce the computational complexity.

17



CHAPTER 1. INTRODUCTION

Particle Mesh & P3M

Particle mesh (PM) methods (e.g. Hockney & Eastwood 1981; Centrella & Melott 1983;

Klypin & Shandarin 1983) leverage the Fast Fourier Transform (FFT; Cooley & Tukey

1965) to solve Poisson’s equation on a mesh. Particles do not interact directly with each

other but instead move in the smoothed potential of all other particles. The particle

mass is deposited on a lattice at each time step using an interpolation scheme such as

nearest grid point (NGP) or triangle-shaped cloud (TSC), and the discrete density field is

then Fourier transformed to solve for the potential. The gradient of the potential is then

interpolated back to individual particle positions to give the acceleration.

This scheme is quite efficient, as the work is O(N) in the number of particles. Fur-

thermore, the use of FFTs is amenable to periodic boundary conditions. However, the

force resolution is quite poor near the mesh spacing, and the work scales as O(M3 logM)

in the number of mesh cells per dimension. The memory requirements of a large mesh can

be very restrictive, too, scaling as O(M3). PM is not used today as a “full N-body” solver,

although it has received some renewed interest as an approximate method comparable to

2LPT or COLA (Tassev et al. 2013; Feng et al. 2016).

To solve the issue of small-scale force resolution without a brute-force increase in

the FFT mesh size, a class of hybrid “particle-particle particle-mesh” (P3M) methods

has evolved in which nearby particles interact via direct summation and distant particles

interact via the smooth mesh potential (Eastwood & Hockney 1974; Eastwood et al.

1980; Efstathiou & Eastwood 1981; Efstathiou et al. 1985). This method can resolve

close encounters while keeping the amount of O(N2) work to manageable levels. The

difficulty is that one cannot naively co-add the direct forces and mesh forces, since the
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mesh forces include the contribution from all particles, including nearby ones. Thus, one

would end up double-counting particles. Instead, the direct force law must be modified

from 1/r2 to a “compensated” form—essentially 1/r2−Fmesh(r). The resulting expression

is quite complex and prohibitively expensive to compute, so it is usually approximated

with interpolation or spline. This is also typically done isotropically which introduces an

additional error because the mesh force is anisotropic on small scales at the few to 10%

level (Habib et al. 2016).

In Chapter 2, we will introduce the Abacus method which similarly splits the force

into a short-range and long-range component, but without any overlap and thus no need

to compute a compensated kernel.

Trees

Another method of reducing the amount of O(N2) direct force work is based on the

observation that most particles pairs occur at large separation in a quasi-homogeneous

distribution. Thus, it would be useful to be able to represent distant particles as a

monopole or low-order multipole since the details of distant mass distributions matter

very little. The challenge is implementing an efficient space partitioning scheme that

facilitates decision making about whether a given particle should interact with another

directly or as part of a monopole.

Tree structures are one such partitioning scheme. As famously implemented by

Barnes & Hut (1986), an “oct-tree” recursively partitions space into 8 equal sub-volumes

until the smallest sub-volume contains only one (or a few) particle(s). Each sub-volume is

a“node” in the tree; the whole volume is the root node, and nodes with no children are leaf
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nodes. Every node contains the total mass and center of mass of all particles beneath it

(or a multipole expansion of same). Each particle may then interact with nearby particles

directly and with distant particles via their parent node. These decisions are made by

“walking” the tree starting from the root node and determining the highest-level node in

each branch that satisfies the opening-angle criterion l/D < θ , where l is the distance to

the node and D is its extent. θ thus sets the accuracy of the method, allowing for a clear

accuracy-time trade-off.

Tree construction takes O(N logN) time, since N particles must be inserted and each

insertion requires a decision at each of O(logN) levels. Similarly, force evaluation takes

O(N logN) time. Trees are usually reconstructed at each time step for maximum accuracy.

Modern CPU architecture does have implications for the efficiency of tree methods.

The compute patterns of tree construction and walking are not naturally amenable to

SIMD (“same-instruction, multiple-data”) vectorization, and the data access patterns are

not amenable to high cache utilization. Similar complications apply to GPU architectures;

developing efficient tree algorithms is an active area of research (e.g. Teyssier 2010; Warren

2013; Potter et al. 2016).

Aside from computational complications, tree codes introduce an additional physical

complication: they do not readily provide a way to sum over the infinite replicas implied

by the periodic boundary conditions. This is handled naturally by Fourier methods, so

most tree-based codes (e.g. Dubinski et al. 2004; Springel 2005; Teyssier 2010; Habib

et al. 2013; Potter et al. 2016), use a particle mesh or other Ewald summation technique

(Ewald 1921) for the large-scale force and the tree for the intermediate and small-scale

force. These are so-called “TreePM” codes.
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1.3.4 Beyond Cosmological N-body

Cosmological simulations are not the only application of N-body. For example, planetary

dynamics (both solar system and exoplanet) relies on numerical modeling of resonant

capture and migration, requiring nearly machine-precision stability over billions of orbits

(Chambers & Migliorini 1997; Lissauer et al. 2011; Rein & Tamayo 2015; Rein & Spiegel

2015; Hernandez & Bertschinger 2015). Similarly, star clustering modeling requires res-

olution of the two- and three-body relaxation processes that exchange cluster binding

energy for binary binding energy or kinetic energy in ejected stars (Perryman et al. 1998;

Baumgardt & Makino 2003; D’Ercole et al. 2008). Both of these cases are quite different

from cosmological N-body. The stochastic nature of the cosmological density field makes

exact resonance modeling and machine-precision energy conservation less important, and

the collisionless nature of dark matter means we do not need to resolve binary orbits of

dark matter particles. Indeed, we do not want to resolve such orbits, as the dark matter

particles should be acting as collisionless tracers of the 3D phase-sheet formed by the cold

dark matter (Abel et al. 2012); this is why the exact 1/r2 force law is typically softened

at small r. The distinction between collisional and collisionless N-body simulations is key,

as we are not actually seeking to model the behavior of the system of N particles but

instead appealing to some underlying, continuum Vlasov-Poisson distribution function

that a putative WIMP dark matter particle would follow. The extent to which N-body is

useful model of this behavior is explored in Chapter 4.

Dark-matter-only N-body simulations ignore the physics of galaxy formation which

is clearly a poor approximation on small scales. However, because hydrodynamical forces

are local and cannot “coordinate” on large scales, ignoring them is an acceptable approx-
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imation for the largest scales of interest (e.g. BAO). Indeed, baryons and dark matter

trace each other very well on large scales (Angulo et al. 2013), so the standard method for

setting up N-body initial conditions is to use as the initial power spectrum the combined

baryon and DM power spectrum at z = 0 and simulate a single, combined species rather

than two separate species. The late-time clustering will thus be representative of both

species, even if the early clustering is not. In this sense, “dark-matter only” simulations

are not truly that but instead “matter only” or perhaps “gravity only”, since the mass and

linear power spectrum from two species is included in the initial particles.

Still, the matter clustering on scales as large as tens of Mpc can be affected by

AGN feedback and other energetic processes (van Daalen et al. 2011; Mohammed et al.

2014; Schneider & Teyssier 2015). Unfortunately, numerical hydrodynamics remains pro-

hibitively expensive, with the largest realizations (e.g. the 200h−1 Mpc box of Illustris

TNG; Springel et al. 2018) only reaching a fraction of the multi-Gpc3 volumes required

for systematic error tests for DESI-like surveys. Thus, N-body simulations remain the pri-

mary tool for structure formation, upon which observationally- or hydro-inspired galaxy

models can be painted for comparison with observations.

Perhaps the most well-known of these models is the halo occupation distribution

(HOD; Berlind & Weinberg 2002; Kravtsov et al. 2004; Zheng et al. 2005, 2007; Zehavi

et al. 2011), in which a number of galaxies is probabilistically assigned to each halo based

on the halo mass (often distinguishing between “central” and “satellite” galaxies). This is

main “galaxy painting” method we will use throughout this thesis. Other methods include

abundance matching (AM) or subhalo abundance matching (SHAM), parametrized stellar

mass/halo mass relation (SHMR), the conditional luminosity function (CLF), and semi-

analytic modeling (SAM), all of which have been recently reviewed in Wechsler & Tinker
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(2018). Aside from galaxy-painting models, other methods include direct prescriptions of

the effect of hydrodynamics and feedback on the matter power spectrum (e.g. Mohammed

et al. 2014; Dai et al. 2018); these could be viewed as a “pre-conditioning” step before

painting galaxies.

Although N-body simulations simulate a cosmic volume, the General Relativistic

effects are extremely small. Strictly speaking, Newtonian simulations incorrectly ignore

the finite “speed of gravity” and the presence of the Hubble horizon c/H(z), but for

reasonable cosmologies, these have very little impact on observables. This is largely due

to the fact that dark matter velocities remain non-relativistic (at most ∼ 0.01c) and the

density perturbations remain small (“weak field” GR). This result has been confirmed

theoretically and with direct GR simulations (Chisari & Zaldarriaga 2011; Jeong et al.

2012; Green & Wald 2012; Adamek et al. 2013, 2014; Fidler et al. 2015; Adamek et al.

2016). Thus, it is sufficient to employ Newtonian gravity in a comoving frame; a highly

convenient result from a computational perspective.

1.3.5 Why N-body?

It is worth considering why N-body has emerged as the primary model of non-linear

matter clustering. It certainly has enough difficulties to give one pause: finite box size

effects, particle discreteness effects, and computational expense, to name a few (all of

which are problems even with an exact N-body solver!). One answer is that there are

not many alternatives: 6D Vlasov-Poisson solvers are strictly memory-bound to small

problems due to the curse of dimensionality (Yoshikawa et al. 2013; Tanaka et al. 2017);
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even all 4600 nodes of the flagship Summit supercomputer4 cannot hold a 3006 phase-

space mesh. Eulerian methods are severely limited due to their inability to track dynamics

past shell crossing (when the velocity becomes multi-valued). Phase-sheet simulations are

a promising recent development (Abel et al. 2012; Hahn et al. 2013; Hahn & Angulo

2016) but still have difficulties in dense regions and have not yet undergone the stringent

validation for dark energy survey science that N-body has.

Another answer is that N-body does have many nice properties: it is automati-

cally spatially adaptive, in the sense that particles end up in areas of interesting density

contrasts and voids are relatively sparsely sampled5. It is extremely simple, due to its

Newtonian nature, and thus possible to reason about (and optimize computationally). It

automatically allows for multi-streaming, to the extent that particle-particle relaxation

can be suppressed. It is Lagrangian, in the sense that mass is not tracked on a static mesh

and is thus robust to Galilean boosts (or equivalently coherent flows of large patches of

the universe). Likewise, one never has to worry about losing mass—a concern in Vlasov

solvers. Particles can also be tagged with their initial Lagrangian locations, enabling di-

rect exploration of the Lagrangian-Eulerian mapping and deterministic tracking of mass

elements through time. And N-body does indeed converge to the Vlasov-Poisson solution

in the limit N→ ∞.

Ultimately, N-body is a tool for helping us answer questions about cosmology through

large-scale structure. However, it is also a window into interesting aspects of modern high-

4https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

5Perhaps overly so; in response to the results of Chapter 4, one senior scientist said “It’s probably the

case that no void has ever been properly simulated.”

24

https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/


CHAPTER 1. INTRODUCTION

performance computing, which we will explore throughout this thesis.

1.4 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2, we introduce our N-

body code Abacus, with special focus on the force solver and the code design it enables.

In Chapter 3, we directly compare the performance and accuracy of Abacus with other

state-of-the-art N-body codes by evolving a canonical set of initial conditions from the Eu-

clid code comparison project. In Chapter 4, we use Abacus’s exceptional force accuracy

to explore the validity of common assumptions in generating initial conditions and use the

results to generate better initial conditions. We also derive an implementation of 2LPT

from direct force evaluations. In Chapter 5, we use these initial conditions to generate

a suite of over 150 N-body simulations and data products spanning 40 cosmologies and

two mass resolutions. We release them publicly as the “Abacus Cosmos” simulations. In

Chapter 6, we develop a method of changing the background cosmology of a simulation—

focusing on small changes with high fidelity—thus enabling re-blinding of a simulation’s

cosmology between epochs of a blind challenge. We validate the methodology on the

Abacus Cosmos simulations. We conclude in Chapter 7.

We also offer five appendices: in Appendix A, we present preliminary results of scale-

free simulations with Abacus as a route towards analytic control on N-body systematics

in the deeply non-linear regime. In support of this, in Appendix B we derive numerically

stable expressions for evaluation of σ8 in power-law cosmologies. In Appendix C, we

present a method of accelerating numerical convergence of an important class of integrals

used in evaluating the Gaussian covariance of the two-point correlation function (2PCF).

25



CHAPTER 1. INTRODUCTION

In Appendix D, we present a pedagogical derivation of Lagrangian perturbation theory

as it relates to initial conditions (essentially a pre-text to Chapter 4). In Appendix E, we

identify a small bias that can arise in computation of the 2PCF from sets of particles.
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Abacus

2.1 Overview

Abacus is a code for massive cosmological N-body simulations with high force accuracy

based on an exact decomposition of the near-field and far-field force. In this method,

developed in Metchnik (2009), the near-field and far-field force are analytically disjoint

such that the near-field has no overlap with the far-field. In other words, the near-field

force is exactly Newtonian gravity with open boundary conditions and not the “compen-

sated” form arising from Green’s function matching in P3M methods (Section 1.3.3). The

method is exceptionally accurate, with only one parameter (the order of the multipole ex-

pansion) controlling the accuracy of the entire method, and fast, with GPU acceleration

of the simple 1/r2 near-field computation and vectorized CPU acceleration of the far-field

multipole computation.

We will introduce the force solver in more detail below and discuss consequences for
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data flow, code design, and hardware. The full mathematical details of the Metchnik

(2009) method as implemented in the modern version of Abacus will be presented in

Pinto et al. (in prep.).

In the following, we refer to the number of cells per dimension in the Abacus domain

decomposition alternately as K or CPD. We usually use the former in mathematical contexts

and the latter in software contexts.

2.2 Force Solver

The Abacus periodic domain is decomposed into K3 cubic cells. We organize particles

into cells, and cells into planar slabs. Particles in cells separated by fewer than near-field

radius R cells (typically 2) interact via the near-field force which we compute with direct

pairwise summation. Particles in more distant cells interact via their multipoles (far-field

force). This is illustrated in Figure 2.1 using R = 1.

The far-field force operates as a convolution over cell multipoles. Thus, it requires a

global view of the box: at least one full dimension must be in memory at a time because

we implement the convolution as a multiplication in Fourier space. This requires a forward

FFT, cell-by-cell multiplication, then a inverse FFT. To accomplish the FFT along a given

dimension, we thus need that full dimension in memory. But the near-field force doesn’t

share that requirement: only a window of −R to +R slabs must be in memory.

This leads to the idea of a slab pipeline (Section 2.4): we load a rolling window of

slabs into memory, compute forces and update particles on the central slab, write out

the trailing slab, and then load a slab at the leading edge. Only the central slab can
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Figure 2.1: A schematic illustration of the Abacus near-field/far-field force decompo-

sition for near-field radius R = 1. Forces on particles in the black cell may come from

the near field (white cells) or far field (shaded cells). Particles in the near field (green

particles) interact via direct 1/r2 Newtonian gravity; particles in the far field (red) use a

high-order multipole approximation to same. The separation is exact: there is no leakage

from far to near field as is common in particle-mesh methods (right panel, dashed lines).

Adapted from Metchnik (2009).

be processed at a given time because R slabs must be present on either side to compute

the near force. For R = 2, this means 5 slabs must be in memory. In practice, we allow

Abacus to read ahead by a few slabs, so we typically have 7 slabs in memory. Typical

values of K are a few hundred to a few thousand, chosen so that we have around 30

particles per cell (this is a performance tuning parameter; the optimal value will vary

from system to system and the expected clustering of the problem).

The thinness of the slab pipeline is a substantial opportunity. Since not all particles

have to be in memory, we don’t need a large computer cluster—we can instead use a
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single node and store the slabs on hard drives, reading and writing them in an ordered

sweep. The raw compute power can be provided by GPUs for the near-field force and

fast vectorized CPU implementations for the far-field force. Of course, one may still use

multiple nodes, and here the thin slab pipeline also helps: almost all of the computation

can be done node-locally, with no tightly-coupled inter-node communication or “ghost”

(padding) zones. We will discuss the parallel implementation in more detail in Section

2.9.

During the slab pipeline, the multipole moments of the particle positions are com-

puted in every cell and written to disk. After a single pipeline sweep through the volume,

we thus have K slabs of the cell multipoles. Now the far-field convolution is ready to run:

a “derivatives” tensor is convolved with the cell multipoles to produce a Taylor series ap-

proximation to the force in every cell. We dub these the “Taylors”. The derivatives tensor

is so called because it uses the derivative of the gravitational potential from the multipole

moments to produce the acceleration. It encodes the mapping of multipole coefficients in

one cell to Taylor series coefficients in all other cells. This tensor is fixed for a given K,

R, and multipole order p and is pre-computed in a small amount of time.

The convolution is performed in Fourier space as a multiplication, so in detail we

perform the 2D yz-FFT during the slab pipeline while we have the whole slab in memory

(a slab spans all y & z cells for a single x). Thus, the convolution’s task is to do the

cross-slab x-FFT, apply the derivatives tensor in Fourier space, and do the inverse x-FFT

to produce the Taylors. The inverse yz-FFT is done while applying the Taylors during

the slab pipeline.

Every time step thus consists of two sub-steps: the slab pipeline and the convolution.
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In the Abacus implementation, these are separate executables called singlestep and

convolution. The time step loop consists of invoking these two in a tick-tock fashion.

singlestep dominates the runtime, with convolution taking about 10% of the total

time.

Multipole order p = 8 is our usual choice that balances performance and accuracy.

One way we test our accuracy is with the “Ewald test”, in which we compute the forces on

a random distribution of 65K particles with a brute-force Ewald summation (Ewald 1921)

in quad-double precision and compare the result with Abacus’s. We find that Abacus’s

99% and median fractional errors are 1.6×10−4 and 1.2×10−5, respectively. We also use

a “homogeneous lattice” test, in which a uniform grid of particles is set up such that the

forces should be zero everywhere. For p = 8, the maximum deviation is 2.6×10−5, in units

of the displacement that would produce that force under the Zel’dovich Approximation

(Zel’dovich 1970), expressed as a fraction of the inter-particle spacing.

One reason we choose the multipole order to give such high force accuracy is that our

domain decomposition is a structured mesh. When computing forces on such a repeating

structure, the force error patterns are likely to not be homogeneous and random: they

will vary based on position in the cell and approximately repeat in every cell. Such a

spatially repeating error could readily appear clustering statistics which are some of the

primary quantities we wish to measure from these simulations.

The simplicity of the near-field computation offers a substantial performance and

accuracy opportunity. Due to the compact force split, if we compute the near-field force

with brute force N2 summation, then it is exact (up to machine precision) and any force

inaccuracy must arise from the far-field. To increase total force accuracy, one thus only
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needs to increase the far-field multipole order p. The challenge then becomes offsetting

the computational load of doing so. This is where the GPU performance helps: we can

decrease K to shift work from the far field into the near field, balancing the performance

for the choice of p. Modern GPUs excel at the kind of work N-body requires: compute-

dense kernels consisting of a few simple mathematical operations repeated many times on

a small amount of data (Section 2.5). In Abacus, this performance translates directly

into increased accuracy: the faster the near field becomes, the smaller the optimal K

becomes, allowing us to increase p at fixed wall-clock time.

Although Abacus employs single precision (32-bit floats) by default for particle

kinematic data, positions are stored as offsets relative to cell centers. This gains us an

extra 9–10 bits of mantissa beyond the nominal 23 in IEEE 754. Multipole and Taylor

data is stored on disk as 32-bit floats, but all internal far-field computations (Multipoles,

Taylors, and FFTs) are performed in double precision to avoid potential buildup of round-

off error.

The primary Abacus code paper is in preparation (Garrison et al.), of which this

thesis chapter will form the core. Chapters 3, 4, & 5 contain published results from Aba-

cus, including validation tests against analytic theory, against other codes and emulators,

and in internal convergence tests.

2.3 Intuition: Abacus vs. PM/Tree

The central advance of Abacus is the exact near-field/far-field split. To understand

how Abacus “carves out” the near field region from the far-field force kernel, a tempting
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comparison is P3M which also splits the force into a long-range and short-range component

(Section 1.3.3). However, P3M bins all particles onto a monolithic mesh on which the long-

range force is calculated, offering neighboring particles no opportunity to “exclude” each

other. Abacus never bins particles on a mesh, instead computing multipole moments in

cells. To see how this helps, though, a more instructive comparison may be a tree method.

In a tree method such as Barnes-Hut (Barnes & Hut 1986), the domain is decomposed

into hierarchical cells in which multipole moments are computed. A given cell is free

to interact with another cell directly, computing all pairwise interactions, or with its

multipoles. If we consider direct interaction “near field” and multipole interaction “far

field”, then we can say that a tree method has an exact near-field/far-field split. Abacus

works the same way, with the near field given by direct interaction and the far field by

multipoles, except that multipoles are computed on a Cartesian grid instead of a tree.

This rigid structuring of the cells allows us to re-phrase the problem as a convolution over

cells instead of many separate interactions of pairs of cells. The convolution is amenable to

acceleration with Fourier methods which also offers a chance to include periodic boundary

conditions for “free”.

It is worth emphasizing again that the mesh size K has no bearing on the force

accuracy. The opening angle to a cell in the far-field (and thus the far-field accuracy) is

fixed by the near-field radius R, not K. This is quite different from PM, where a finer

mass mesh means better force accuracy.

The one minor exception to this is that a higher K means a smaller near-field region

and thus smaller near-field forces. In a quasi-homogeneous scenario (such as the initial

time) where the near-field and far-field forces must nearly cancel each other out, this
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means less “catastrophic cancelation” of two large, opposing forces at the boundary of the

near field. In practice, this is a small effect.

2.4 Slab Pipeline

The particle update cycle—load, compute forces, kick, drift, store—in Abacus is ex-

pressed as a slab pipeline. A slab is a plane of 1×K×K cells (one cell thick in the x direc-

tion). The pipeline is implemented as an event loop with a set of Dependency objects, each

with preconditions and an action. The preconditions express data dependencies between

pipeline actions; a given action can only execute after its preconditions are fulfilled. For

example, Kick:2, the velocity update for slab 2, can only execute once NearForce:2 and

TaylorForce:2, the near-field and far-field forces on slab 2, have completed. Dependen-

cies may also cross slabs: NearForce:2 must wait for LoadSlab:0 through LoadSlab:4,

for example (the near-field radius must be in memory).

This event-driven model makes it easy to incorporate asynchronous events, such as

completion of I/O, GPU kernel execution, or MPI communication. With a properly

expressed set of dependencies, the maximum amount of work possible can execute while

waiting for external events. Each dependency will run exactly CPD times, and the pipeline

finishes when the FinishAction has run on all slabs.

We require that dependencies execute slabs sequentially (e.g. TaylorForce:1 must

always execute before TaylorForce:2), even if preconditions are satisfied out-of-order

(this is rare but could happen due to out-of-order I/O completion, for example). Out-of-

order execution is safe but potentially wastes memory since the pipeline effectively gets
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wider (more slabs in memory). For the same reason, we manually specify the first slab for

each dependency rather than letting them choose to start on whichever slab first becomes

available.

Abacus has several versions of the slab pipeline: notably, on-the-fly group finding

introduces a number of new dependencies. These significantly lengthen and widen the

pipeline (the pipeline length is the number of dependencies a slab must pass through;

the pipeline width is the number of slabs required to be in memory before the first slab

can finish). Toggling between the two versions of the pipeline is as simple as stubbing

the group-finding dependencies with dummy preconditions that always pass and no-op

actions that do nothing. The event loop can remain exactly the same.

Abacus also contains several simplified pipelines for various tasks, such as loading

the initial conditions, multipole recovery, or standalone group finding. The initial condi-

tions pipeline simply reads particles, computes multipoles, and generates state files. The

multipole recovery is used to generate multipoles an existing state when the multipole files

are missing; this would typically happen when restarting from a backup. The standalone

group finding is used when one wishes to run a state or output through the “on-the-fly”

group finder. Each of these is conveniently expressed with a short event loop and a small

set of dependencies (many of which can be reused from the primary pipeline).

2.5 GPU Data Model

To compute the near-field force at each time step, every cell in Abacus must interact with

its 125 nearest neighbor cells (for near-field radius R = 2) using open-boundary-condition
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Newtonian gravity. We process one slab at a time, but must have 5 in memory: the

central slab is the “sink” slab that receives forces from itself and its neighbor slabs, and

the neighbor slabs are “source” slabs. The amount of work is formidable for CPUs but

the mathematical operations are rather simple; thus, we leverage the massive parallelism

of GPUs to accelerate the computation. In this model, the efficiency of the simple N2

approach outweighs the gains of a more complicated (e.g. tree) approach for all but the

most clustered problems. The architecture of the GPU demands some care in arranging

the particle data and interaction sets for efficient computation; we discuss our GPU data

model here. We will use the case R = 2 for concreteness, so all instances of “5 cells” or “5

slabs” may be replaced by 2R + 1 cells or slabs.

Once 5 slabs are loaded into memory, we are ready to compute accelerations on the

central slab. All particles in the central slab must act as sink and source particles; particles

in the neighboring slabs must only act as sources. For simplicity, we do not exploit the

pair-wise symmetry in the force calculation; thus, particles in the central slab appear both

in the sink lists and the source lists.

We arrange the computation as “pencil-on-pencil” interactions, where every pencil

is a linear block of 5 cells. Sink pencils run in the z direction, while source pencils run

in the x direction (across slabs). A sink pencil centered at cell (i, j,k) will interact with

the 5 source pencils centered at (i, j + b,k) for b ∈ [−2,2]. Graphically, one can think of

each sink pencil being acted on by the plane of 5 source pencils that intersects its center

perpendicularly. By having each sink cell appear in 5 sink pencils, centered at (i, j,k + c)

for c ∈ [−2,2], we thereby include every needed pairwise interaction exactly once. Each

cell accumulates 5 partial accelerations, one for each of its parent pencils.
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All of the sink pencils for a given i and range of j are indexed in a SetInterac-

tionCollection (SIC) object along with the corresponding source pencils. Upon pencil

construction, particle positions are adjusted from cell-centered to pencil-centered: this

allows the GPU to be agnostic to cell divisions and seamlessly handles the periodic wrap.

Sink particles are arranged into blocks with a BlockSize of 64 particles (or some other

a multiple of the atomic CUDA warp size of 32 threads). The membership of blocks in

pencils defines which sink blocks must interact with which source blocks—this is how the

GPU views the pencil-on-pencil model: interactions of blocks rather than pencils.

Pencils are essentially virtual indexing structures until the particles are loaded for

staging to the GPU. At that point, all pencils are explicitly constructed (and thus 5 copies

of every sink particle are made). Each copy is offset to pencil coordinates as discussed

above; thus, the sink and source coordinate systems differ by at most a y offset. The

y offset is stored for every pencil interaction and is also passed to the GPU, where it is

applied on the fly.

One CUDA kernel launch is executed for each SIC. Each CUDA kernel launches

with NSinkBlocks thread blocks, each containing BlockSize threads. On the GPU, each

thread is responsible for one sink (this is why the particle block size must be a multiple

of the thread warp size). Each thread loads its sink, and then the work loop begins: each

thread loads one source into shared memory and pauses at a barrier, such that all threads

have access to BlockSize sources at a time. Then each thread loops over sources and

computes the 1/r2 interaction, or a softened form thereof.

Why go through all this trouble to construct pencils? The simplest data model would

be to compute cell-on-cell interactions, but that would be substantially less efficient. An
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NVIDIA Volta GPU has 900 GB/s GPU memory bandwidth, or 75 Gsources/s. But the

compute rate is 15 TFLOPS, or ∼ 650 Gforces/s. Thus, each source should be used at

least 10 times per load to avoid being bandwidth-limited. Packing the sinks into pencils

that fill thread blocks ensures 64 uses per load. Furthermore, NVLink can only transfer

data from host memory to the GPU1 at 35 GB/s, so we would like to use each source at

least 250 times per transfer. With each source acting on at least 5 sink pencils (possibly

more across different j), this means we only need 10 particles per cell which is achievable

outside of sparse voids.

The SetInteractionCollection construction happens as soon as the positions and

cell info for 5 slabs are loaded. No particle copies happen at this time; the SIC instead

constructs the necessary indexing information for a later copy. The SIC is pushed to a

work queue that is monitored by several CPU threads; when a thread is free, it pops a SIC

from the queue and begins executing it. First, the thread constructs pencils by copying

particles from the slabs to pinned memory, applying coordinate offsets on-the-fly. Then,

it launches the CUDA copies, the main work kernel, and the acceleration copy-back. The

thread then blocks while waiting for the results. Finally, once all the accelerations are

back in host memory, the 5 partial accelerations are combined into one total acceleration;

this reduction is performed directly into the acceleration slab. The result is the final

near-field force for every particle that was part of the SIC.

We use CUDA “pinned memory” as the staging area where we construct pencils to

send to the GPU and receive accelerations back from the GPU. Pinning memory locks

RAM pages such that they have a guaranteed physical address (not just a virtual address).

1As measured by us on Summit using NVIDIA’s bandwidth tool
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This enables direct memory access (DMA) transfers between host RAM and GPU memory

with no CPU intervention.

The copy of particles into pinned memory does apply extra memory pressure, but it

ensures optimal data transfer rate to the GPU and allows the CUDA stream to proceed

unblocked. The initial pinning of memory is slow, however—at least a few seconds, de-

pending on the amount of pinned memory. This is a noticeable overhead in the Abacus

model where a new process is invoked for every time step. While some work can begin

without access to pinned memory, the GPU work (often the rate-limiting factor at late

times) cannot. In the near-term, we plan to overlap convolution work with the GPU

startup; long-term, this (and other overheads) may push us to a single-invocation model

where all time steps are executed within a single process call.

We typically have three CPU threads per GPU. Each thread manages one CUDA

stream and executes the pencil construction and acceleration co-addition (essentially all

pinned memory work). Using three streams per GPU ensures overlap of host-device

transfers and GPU compute.

This careful data packaging is all for naught if our force kernel is slow to compute.

Abacus offers a number of softening options, but our preferred one is a “spline softening”,

in which the force law is regularized at small r but explicitly switches to 1/r2 at a finite

radius (Section 3.4.3). From a computational perspective, the key aspects are the small

number of floating-point operations (FLOPs) per interaction (about 22, plus a reciprocal

square root) and the implementation of the hand-off to the 1/r2 form with a min instead

of a conditional. A conditional such as an if statement runs the danger of triggering a

conditional jump instead of a conditional move thus causing code path branching—this
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is costly on the CPU and even more so on the GPU with its lock-step hardware model.

Hopefully a smart compiler could infer this optimization on its own, but it is far safer to

implement it explicitly, as this is the innermost loop of the entire near-field computation.

We use the NVIDIA’s CUDA programming language for our GPU implementation,

as it is the most mature GPU programming language and the NVIDIA GPUs have wide

adoption in the supercomputing community. A port to another architecture such as Intel’s

Xeon Phi would be straightforward, but the hardware is still a factor of a few slower than

the NVIDIA GPUs.

2.6 Top-level Interface

The top-level Abacus interface is written in Python. The Python layer serves several

purposes: it provides programmatic and script interfaces to set up a new simulation, it

parses the parameter file and does preamble work, and it executes the simulation. The

main time step loop is actually in the Python layer, since a new process in invoked for

every time step (indeed, two new processes, since singlestep and convolution are both

invoked for every time step).

This is a convenient model as it allows for flexible logic based on the state of the

simulation: if no state files exist, then we know this must be an initial conditions step.

If no initial conditions exist, we know we must invoke the IC generator. If no Taylors

exist, then we must invoke the convolution. If no derivatives exist, then we must create

them. If no multipoles exist, then we must invoke multipole recovery. And if none of

the above are true, then we may invoke singlestep. These file-oriented tasks are readily
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accomplished in Python and is one reason why the time step loop is not implemented in

C++.

singlestep loads a “read state” and outputs a “write state” (a “state” is a directory

containing all slab files). Upon successful completion of singlestep, the Python layer

deletes the read state and moves the read state to the write state. In this sense, sin-

glestep is idempotent (unless the user has requested that the write state overwrite the

read state to save space).

The interface to run a new simulation is quite simple: typically, one creates a new pa-

rameter file called abacus.par2 (second-level parameter file), fills it with the desired cos-

mology, output, softening, and other code parameters, and calls abacus.run(’abacus.par2’)

in Python. The abacus.par2 file is processed into a abacus.par file with various sub-

stitutions from the shell environment (and with simple math like NP = 64**3 processed

into NP = 262144).

Paths such as working directories and output directories are read from environment

variables by default. These are set up by Abacus upon installation into the user’s

.bashrc file or a module file (on systems that support modules).

The Python layer also sets up the environment variables that the executables will see.

Notably, some OpenMP settings (such as thread affinity, Section 2.8) have no runtime

interfaces by which they can be controlled and must be configured with environment

variables.

The executables produce a number of log files that the Python layer checks after each

step. It then writes some simple information about timing and status to a global log, from

which the overall simulation progress can be monitored.
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Checkpoint backups are incredibly simple with Abacus: the state directory is the

checkpoint. Thus, making a backup is as simple as copying a directory, usually to some

network file system. The Python layer handles this as well.

Different machines have different code tuning values related numbers of cores and

thread bindings, so we store tuning values for our commonly-used machines in the Abacus

repository as “site files”. These are loaded when parsing the abacus.par2 file in order

to insulate users from optimization minutae, but they may be overridden (or skipped

entirely) as desired.

Abacus supports several I/O modes, including sloshing, striping, and overwriting.

Sloshing reads from one disk system and writes to another; striping divides even and

odd state files between disk systems; overwriting writes in-place. The I/O mode may

be specified separately for the state and the multipoles/Taylors. The optimal choice will

depend on the performance and capacity of local disk systems; we sloshed the state and

striped the multipoles/Taylors for maximum performance in the Euclid simulation of

Chapter 3, for example.

2.7 Memory Allocation

Each “logical slab” in Abacus has many different types of associated data, be it particle

data like positions and velocities or cell data like cell offsets and sizes. Every slab in

Abacus thus has about 20 different associated “slab types”, such as PosSlab, VelSlab,

or CellInfoSlab. When requesting a slab from the Abacus “slab buffer”, one thus

specifies both a slab number (an integer) and a slab type (an enum).
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The Abacus slab buffer interface is a high-level wrapper around a low-level “arena

allocator”. Arenas are thin wrappers around large, contiguous memory allocations. The

arenas manage metadata about whether an allocation is present and how many bytes have

been allocated; they also include a few “guard bytes” at either end of each slab to help

detect out-of-bounds writes. The details of slab numbers and slab types are abstracted

away from the arena allocator which uses a flattened “slab ID”.

Abacus puts a large amount of pressure on the memory allocator (especially with

group finding, which allocates per-group temporary workspace). Memory allocation (malloc()

and the like) is well known to be one of the slowest low-level operations on Linux systems.

Indeed, we reached a point in 2018 where 15% of the total simulation time was spent

just calling free() on arenas! The implementation in the Linux kernel is not particularly

optimized for the Abacus use-case with our mix of small and large allocations and heavy

multi-threading. Furthermore, the kernel memory manager tries to ensure that memory

freed in one process is available for allocation in another process; this requires remapping

physical pages to new virtual address spaces. This is solving a harder problem than Aba-

cus needs—we can safely assume that only one (memory-hungry) process is running at a

time.

Our approach to reduce kernel memory allocator pressure was twofold: reuse allo-

cations when possible, and use a different malloc implementation. Implementing arena

reuse was fairly straightforward within our allocator: when we discard a slab, we do not

always free it but instead mark it as a “reuse slab”. The next time the arena allocator

receives a allocation request, it first checks if the reuse slab is present and is large enough

to satisfy the allocation. To facilitate a higher hit-rate, we over-allocate arenas by a few

percent. To avoid running out of memory, we only retain at most one reuse slab per slab
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type (in detail, it is implemented as the (K + 1)-th slab). In medium-sized simulations

(e.g. the N = 20483, K = 693 Euclid simulation of Chapter 3), this reduces the number of

fresh allocations from >10K to a few hundred.

We also replaced the built-in GNU allocator with Google’s tcmalloc2 (“thread-cache

malloc”), a user-space allocator with high performance under multi-threaded workloads.

As the name suggests, every thread keeps a cache of recently released memory, such that

the allocator can often immediately satisfy small requests out of thread-local cache rather

than a central store (thus no locks are required). For large requests, tcmalloc does

use a central store, but typically does not release memory back to the kernel. Thus, all

allocations after a short burn-in period can be satisfied in user-space without an expensive

kernel call.

tcmalloc was extremely successful in handling Abacus’s memory pressure. The

15% time spent calling free() disappeared, but more surprisingly, it accelerated about 6

independent areas of the code that we did not even realize were affected by background

memory management issues. Abacus saw an immediate 60% performance boost as a

result.

2.8 Thread Affinity and NUMA

Modern multi-socket platforms often have certain memory banks associated with certain

CPU sockets. All memory remains addressable by all CPUs but at different rates. This

model is known as “non-uniform memory access” or NUMA.

2https://gperftools.github.io/gperftools/tcmalloc.html
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Abacus is a NUMA-aware code: we try to ensure that CPUs, GPUs, and disks

(where applicable) only access memory on their NUMA node. We accomplish this in two

parts: binding threads to cores, and scheduling threads over memory consistently. The

goal of the thread binding is NUMA consistency: that the socket that first touches a

region of memory is the only socket that works on that region, as physical memory pages

are allocated on first touch. Binding also prevents unnecessary jumping of threads among

cores and flushing of caches. This generally helps Abacus singlestep performance by

20%.

There are a few thread pools in Abacus—namely, the OpenMP threads, the GPU

threads, and the I/O threads. The later two are implemented with POSIX pthreads and

are bound to cores in a user-customizable manner via the Abacus parameter file. One

typically wants to assign these threads to the CPU socket to which the corresponding

hardware device (GPU or hard drive) is attached.

The OpenMP thread affinity is controlled via the OpenMP “places” mechanism (the

OMP_PLACES and OMP_PROC_BIND environment variables). Each place is a set of one or

more cores to which a thread may be bound; the binding parameter controls how to

distribute threads to places. In Abacus, we typically assign one place per core, so the

binding is trivial.

We typically find it advantageous to give I/O threads their own cores and let each

GPU spread its threads over a handful of cores. This seems to affect I/O and GPU

communication at the 20% level. The OpenMP threads use the rest of the available cores.

On an older six-core machine like ted this would not be feasible, but on our latest hal

hardware with 28 cores, spending about 8 on GPU and I/O threads is acceptable (see
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Section 2.16.4 for more on ted and hal). The OpenMP work doesn’t scale perfectly with

cores anyway, especially in memory-bandwidth-limited operations like the kick and drift,

so losing 8 cores is a worthwhile tradeoff for more GPU performance (especially at late

times). On many-core platforms like Summit (42 cores), this is an even better tradeoff.

tcmalloc, the memory allocator used by Abacus (Section 2.7), also has nice NUMA

properties. Since every thread keeps a cache of recently released memory, a thread will

likely receive memory that it recently released in response to a new allocation request.

Since tcmalloc usually does not release memory back to the kernel, this means that the

memory will still be on the same NUMA node.

2.9 Parallel Implementation

The origin of Abacus as an “out-of-core” code designed to operate on thin slices of a

simulation lends itself to parallelization. Each node can be responsible for a chunk of

slabs and can begin processing them immediately at the beginning of a time step without

any neighbor communication. To a node, there is little difference between a slab being on

disk versus being on another node.

Eventually, a node will need neighbor communication in order to process slabs near

its local domain boundaries—the near-field force needs R neighbor slabs on each side,

and the group finding needs about 10 h−1 Mpc of neighbor slabs. We implement this

communication as a one-time burst transfer: once the first slab has finished on a node, all

preceding slabs—positions, velocities, accelerations, cell groups, etc—are detached from

the current node and transferred to the previous node. Every node thus receives slabs

46



CHAPTER 2. ABACUS

from its upstream neighbor in a 1D toroidal fashion.

For concreteness, consider a node n that has slabs j through j+N in memory initially:

the first slab to finish will be slab k, which will be some 10 or 15 slabs higher than j due

to cross-slab dependencies such as the near-force and group-finding. Slabs j through

k−1 will then be transferred to node n−1, and slabs upwards of j + N will be received

from node n + 1. Node n will eventually finish slabs k through k + N. Thus, the domain

decomposition cyclicly rotates across nodes.

Received slabs are directly installed into arenas. The local dependencies are updated,

too, so the slab pipeline is none the wiser about a slab having been processed on another

node versus locally. Information about incoming arenas and dependencies is packaged

into a parallel manifest which contains the types and sizes of incoming data so allocations

may be performed.

The 1D parallel decomposition is ultimately not as scalable as a 2D or 3D decom-

position. The implementation, however, is much simpler given Abacus’s slab-oriented

nature and limits communication overheads. The main limitation of the 1D decomposi-

tion is one of memory: each node must have enough RAM to hold 10 or 20 h−1 Mpc worth

of slabs to support group finding. Platforms like Summit with 512 GB of RAM per node

are well-suited to this parallel strategy; we have tested 70003 simulations using 64 nodes

successfully, with perfect weak scaling across a factor of 100 in problem size. The perfect

weak scaling is unsurprising, given the lack of any tightly-coupled communication, but

non-trivial, since the slabs themselves are getting much fatter.

We have implemented this parallel scheme using MPI. One hurdle we did not antic-

ipate is that MPI does not support individual transfers larger than 2 GB (231−1 bytes,
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the 32-bit signed integer maximum). In theory, one can create larger datatypes (of 1 MB

in size, for example) and transfer 231−1 of those, but we have no divisibility guarantees

for many of our transfers. Thus, it is ultimately simpler to break arenas into a safe size

like 1 GB. The performance overhead is minimal.

For the convolution, every node has some range of x in memory for all y and z; we

need all x in memory for some y and z so we can do the x-FFT. Rather than use a canned

MPI FFT routine, we opt to do a “manual” MPI transpose and a then apply a local FFT.

This allow us to overlap the MPI transpose work with other parts of the code, such as

GPU initialization (which is somewhat slow on Summit and must be done for every time

step).

2.10 On-the-fly Group Finding

Abacus is designed for massive simulations where post-processing is expensive—one often

does not one to save full particle data from more than a few epochs. Some data products,

such as halo catalogs, we would prefer to have at more epochs than we have full particle

outputs, especially for analyses like merger trees. Thus, on-the-fly analysis is desirable

when it will not horribly slow down the simulation. With Abacus, we have a further

requirement: the on-the-fly analysis must be posed in a manner that does not require

all particles in memory at once. In other words, it must be implementable in the slab

pipeline.

We have developed an on-the-fly friends-of-friends (FoF, Davis et al. 1985) halo finder

that is fully integrated with the Abacus cell and slab structure. Aside from generating
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a useful data product, we have an ulterior motive: our microstepping (adaptive time

stepping) scheme uses halos to identify regions of small dynamical time that are candidates

for sub-cycling. This work will be presented in Maksimova et al.; see Section 2.18 for more

discussion.

Our FoF pipeline begins with independent FoF in every cell. Each cell group is bit-

tagged with any cell faces of which it is within one linking length. These groups are then

linked across cell boundaries within a slab, then with the slab behind them.

Cell FoF groups are formed by reordering particles in cells; the “group” is then

recorded with a start index and count. “Global groups” consist of lists of cell groups.

In this way, we form the FoF groups only with permutations and with no temporary

copies until the final group is ready to be gathered (for convenient computation of halo

properties and microstepping). Only the particle positions participate in the initial re-

ordering in cells; velocities and PIDs are rearranged to match once we have the final

permutation of particles.

We support three levels of group finding:

• Level 0 (“groups”), linking length b = 0.2−0.25: the outermost FoF groups. Used

for microstepping.

• Level 1 (“halos”), b = 0.15−0.2: the traditional virialized structure. May be FoF or

another algorithm such as spherical overdensity operating withing L0 groups.

• Level 2 (“cores”), b = 0.1− 0.15: the innermost group. Used for tagging particles

for merger trees; allows for robust reconstruction of mergers and flybys.

Not every level must be found at every time step. In microstepping simulations, only L0
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must be found every time.

Finding groups in cells before proceeding to global groups accelerates the FoF consid-

erably. The cell structure effectively prunes possible particle linkages at large distances,

much as a tree structure would in a traditional FoF code. Within cells, we also apply

a core-skin partitioning algorithm to accelerate group finding and use AVX to accelerate

distance computations.

The group finding dependencies add significant width to the slab pipeline. Slabs

cannot be released from memory until all groups containing particles in that slab are

closed. Groups are closed when they cannot have any more linkages. FoF, with its

extensive percolation, thus extends the physical pipeline width to 10 h−1 Mpc or more,

independent of the slab width. It is difficult to replace FoF as the L0 group finder,

however; it has strong properties of local decidability not shared by SO and most other

algorithms. Local decidability is key for integration with the cell and slab structures of

Abacus.

We output a number of products for L1 and L2 groups: halo properties, particle

subsamples, and tagged PIDs; see Section 2.12.

Our initial group finding implementation was quite slow at early times. In the initial,

near-lattice state, almost no groups are present, but all particles near faces still need to

be considered as part of potential global groups that might link across a cell boundary.

This caused an excessive amount of work for a regime with no groups!

We decided to augment our group finding with a local density estimate from the GPU:

when computing forces, one is already computing r2 to nearby particles. To estimate the

local density, one can just increment a counter if a neighbor particle is found to be within
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b2. By setting b to the FoF linking length, we know if a particle can possibly have any

neighbors. This decreased the amount of group-finding work at early times by orders of

magnitude.

To carry around the density estimate, we promote triplets of near-field accelerations

to quads. In detail, the density estimate is not an integer counter but an floating point

accumulator of 1− r2/b2; this density estimator is smoother than the “top hat” estimator

and thus gives a lower variance estimate. This is particularly useful for applications like

spherical overdensity L1 group finding. On the GPU, we compute 1− r2/b2 as b2− r2 to

save the cost of a division.

2.11 In-Memory Operation (Ramdisk)

Abacus is designed to operate on problem sizes that do not fit into memory by buffering

particle data on hard drives and only loading a few slabs into memory at a time. However,

since 2018, GPU hardware (combined with several software engineering improvements in

Abacus) has put the compute rate substantially out of balance with the disk I/O rate.

Unfortunately, the I/O load is not tunable in the same way that the balance of CPU

and GPU work is tunable by changing CPD—one can see this by recognizing that every

particle must be read and written once per time step. Eventually, microstepping will

substantially reduce the number of global time steps per simulation, thus easing the I/O

burden, but for our flagship ambitions in the near future it became apparent that even

NVMe drives would struggle to keep up with Abacus’s compute rate. Thus, we developed

an in-memory version of Abacus using a ramdisk.
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A ramdisk is a file system that exists in RAM. It is a Linux kernel service that is

accessible as a normal directory; by default, it is available under the directory /dev/shm/

(“shm” stands for “shared memory”). By default, half of a system’s RAM is available as

a ramdisk. This does not limit the size of problems we can run, however, since about

half of our memory allocations (e.g. accelerations and group finding data) are ephemeral

anyway.

Files written to a ramdisk will stay there even after the writing process exits. They

can then be read by a new process. The ramdisk files have “kernel persistence”: they stay

in memory as long as the Linux kernel is active.

The ramdisk model offers many advantages over a pure in-memory version of Abacus

(in which the executable would be invoked once and run all time steps before exiting):

1. The singlestep executable can be responsible for exactly one time step, meaning

global variables and objects can assume cosmology values, tuning parameters, and

bookkeeping values relevant to the current step.

2. The code can remain almost identical to the non-ramdisk version, so we can continue

to support normal disk and ramdisk with almost no top-level logic changes.

3. Writing/restoring a backup is as simple as copying files to/from the ramdisk direc-

tory.

4. The information flow between steps is strictly confined to information read from

state files; this is a strong protection against bugs.
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The shared-memory interface is POSIX-specified3, so the Abacus ramdisk function-

ality should be robust across any platform on which we might reasonably run.

In singlestep, ramdisk functionality is coordinated through the arena interface.

Arena allocations are automatically performed in shared memory if the file path for that

arena is on ramdisk (i.e. starts with /dev/shm/). “Reading” an arena consists of attaching

a pointer using mmap() (“memory map”), so the “I/O” is effectively instantaneous. There

are no memory copies involved.

In convolution, the multipoles are automatically mapped from shared memory if

they exist on the ramdisk. The Taylors can be written directly into the multipoles memory,

and the convolution driver renames the multipoles files to the corresponding Taylors name

at the end of a successful convolution.

The ramdisk has been successful in supporting our most massive simulations (e.g. 70003

test runs on 64 nodes of Summit, each with 512 GB of RAM and thus 256 GB used for

ramdisk), but an unexpected performance bottleneck has emerged. The mmap() interface

has been unexpectedly slow; it is likely not designed to deal with the many massive allo-

cations that Abacus is performing, instead being designed for lightweight inter-process

communication. Thus mapping and un-mapping memory is a noticeable overhead, of or-

der 10% of the step time (at early, non-GPU-limited times). Preliminary investigation

shows that mmap() is implemented in the Linux kernel with a global lock; it is possible

other kernel operations we perform (such as normal memory allocations) are fighting for

this lock. Possibly too the process of mapping kernel pages into user address space is

causing a costly CPU context switch, or a TLB flush, or a number of other complications.

3http://man7.org/linux/man-pages/man7/shm_overview.7.html
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Thus, despite the nice properties of the ramdisk model, Abacus may eventually

support a full in-memory model. While the software engineering overheads of this will be

larger than the ramdisk model, it will also offer the chance to eliminate other per-process

overheads that Abacus incurs right now, such as pinning CUDA memory at every time

step. This will also retire a risk in the parallel model which currently requires a new

MPI invocation for every time step but would only require a single invocation in the full

in-memory version.

2.12 Outputs

Abacus can output a number of data products. The simplest is a time slice output, or

a snapshot, of all particles at a given redshift. The particles are written in CPD slabs for

convenience and as a consequence of the slab pipeline (Section 2.4)—the “output” pipeline

dependency is activated when a time slice is requested.

To ensure a synchronous output of positions and velocities, the drift of the step before

an output is shorted such that the positions land exactly at the target redshift. The full

kick during the output time step “overshoots”, but the appropriate half-unkick factor is

applied during the output.

Our time slice outputs are typically written in a bit-packed format called pack14

(14 bytes per particle). The positions and velocities are stored as 12-bit offsets from cell

centers, with 40 bits for particle ID. Cells usually span a few h−1 Mpc, so a 12 bit offset is

(pessimistically) 1 h−1 kpc precision. Velocities are scaled to the maximum box velocity

which rarely get above 6000 km/s, so 12 bit precision is 1–2 km/s. These are stored
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as redshift-space displacements so that the positions and velocities use the same units.

pack14 takes less than half the space required for full 32 byte outputs but is more than

sufficient for most cosmological analyses.

Abacus can also generate coarse density grids for on-the-fly power spectra. Usually,

we use these to monitor simulation progress/sanity and instead use our post-processing

pipeline for science power spectra as we don’t want the memory cost of holding a large

FFT mesh in memory during a simulation. Of course, we could disk-buffer this in a

slab-oriented fashion, much like the IC code already does. We will likely explore this

before executing our proposed simulation campaign on Summit (Section 2.19.2), or just

repurpose the cell monopoles from the multipoles files.

Abacus can also produce particle light cones. A light cone is a simulation output in

which the box is placed some distance from an imaginary z = 0 observer and a spherical

surface sweeps inwards towards the observer at the speed of light; particles are output

when their world lines intersect this surface. This produces a “synthetic observation” that

takes into account the finite speed of light.

Light cones are currently implemented in Abacus with particle tags to record which

particles have intersected the light cone. This prevents duplication, but creates “ragged

edges” of the box during the second time a particle’s world line intersects the light cone

(and complicates stacking of observers to generate a longer light cone). We are exploring

alternatives that do not use tags or schemes in which the tag are reset to allow for multiple

world-line intersections.

Of course, Abacus generates many log files. The primary log file is a verbose record

of all slab pipeline operations along with timestamps and copious debugging information.
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It is mostly useful when looking for a specific pathology or when using a log parser. The

timing file is the other key log file: it contains timing breakdowns of each pipeline step and

sub-step along with I/O and GPU performance metrics. This quickly lets us determine

if a simulation is out-of-tune. Other log files include an I/O log for each thread and

convolution logs.

On-the-fly group finding generates several outputs. First are the halos: binary records

of about a dozen halo properties (mass, velocity dispersion, and so on). Next are the halo

particle subsamples: a 10% (user-configurable) sample of the particles in groups, ordered

such that group membership can be reconstructed with indexing information from the

halo records. The subsamples are selected based on particle ID and are thus consistent

across time slice. These are useful for constructing crude merger trees and as sites of

satellite galaxies in the HOD framework. The particle IDs are output separately from

the particle subsample positions and velocities, but in the same order. HOD users will

likely skip downloading this data product, while this may be the only product merger tree

users need. Finally, “tagged” and “taggable” particle are output. In our hierarchical FoF

scheme, particles are tagged if they are part of the innermost level—a halo core. This

allows robust tracking of halos during flybys and mergers.

2.13 Analysis Tools

Abacus has a robust suite of analysis tools for post-processing of massive simulations.

Compared with existing public tools, the primary consideration of our analysis chain is

that the particle data may not fit in memory but that we have a guaranteed spatial

segmentation of our outputs (slabs). The tools are designed to operate on one node
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(compared to the MPI design of a package like nbodykit; Hand et al. 2018), given the

provenance of Abacus as a code designed for massive simulations on one node. We will

briefly discuss our power spectrum code, our correlation function code, and a few other

important utilities.

Our power spectrum code consists of three modules: a 3D particle binning module,

a Fourier transform module, and a 1D histogramming module for gridded data. The

3D binning module is based on an parallelized implementation of triangle-shaped cloud

(TSC) interpolation using Numba4, an LLVM-based just-in-time compiler for Python.

Numba compiles pure Python into machine code and thereby accelerates C-like loops

(a classic anti-pattern in Python). This is particularly useful for cases where Numpy’s

array-broadcasting model of vectorization fails (usually due to memory constraints or

loop-carried dependencies). We have measured our Numba implementation of TSC to be

at least as fast as our original C implementation. We support processing one file at a time

so that the whole particle set never has to be in memory.

Our FFT module is based on pyfftw5, a Python interface to FFTW. Our module

facilitates parallel in-place FFTs with de-convolving of the TSC window function using

Numba.

Our 1D histogramming module likewise uses Numba. The module’s task is to produce

a 1D power spectrum from the 3D FFT. It is parallel and exploits the grid structure of

the data for fast histogram bin lookups.

The efficiency of this full power spectrum pipeline is convenient for post-processing

4http://numba.pydata.org/

5https://pyfftw.readthedocs.io/en/latest/
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simulations, but more importantly, it was highly enabling for the optimization procedure

in Chapter 6 which had to execute evaluate a power spectrum thousands of times during

a 10-dimensional non-linear optimization procedure.

Our correlation function code is backed by the Corrfunc code (Sinha & Garrison

2017a). Corrfunc applies a rectangular mesh to spatially partition the domain and prune

distant particle pairs; the actual distance computations are accelerated with vector in-

structions. For out-of-core analysis, we operate in chunks of width rmax (the maximum

requested correlation function radius): we compute the auto-correlation on the current

chunk and the cross-correlation with the next chunk, then discard the current chunk and

proceed one chunk down.

We have a custom version of Rockstar (Behroozi et al. 2013) that supports our

pack14 file format and outputs halo catalogs with particle subsamples in HDF5 format.

We also have a standalone FoF code, but it is deprecated in favor of the Abacus on-the-

fly FoF. We support running Abacus on-the-fly FoF in post-processing mode6 using a

redacted version of the slab pipeline. Using a redacted pipeline rather than writing new

hooks into the FoF code has proven to be a fortuitous design, as later improvements to the

group finding using local density estimates computed by the GPU were easily incorporated

by re-including the GPU dependencies from the primary pipeline.

We provide simple Python interfaces to load Rockstar and FoF catalogs; these are

part of the Abacus Cosmos release (Garrison et al. 2018, Chapter 5 of this thesis). They

optionally employ the halotools package (Hearin et al. 2017) which is backed by the

astropy Table package (Astropy Collaboration et al. 2018). astropy Tables has proven

6Off-the-fly?
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an excellent package for high-performance analysis tasks given its column-oriented internal

layout and support for multi-dimensional columns, compared to Numpy structured arrays

which lack the former (van der Walt et al. 2011) and pandas which lacks the latter

(McKinney 2010).

We provide a Python interface called ReadAbacus for I/O on the half-dozen parti-

cle file formats in the Abacus software ecosystem. The more complicated formats are

backed by C/C++ code with a ctypes or cffi interface; the simpler ones that can be

parsed directly by Numpy are implemented in pure Python. As many of our analysis

tasks are I/O limited, the ReadAbacus interface also provides an asynchronous interface

that transparently loads the next slab in the background while the current one is being

processed.

2.14 Build System

The Abacus compilation system uses an Autoconf + Make toolchain. The user runs a

configure script which checks for the presence of necessary libraries and sets any compile-

time options for the code, such as single or double precision. Running make will then build

the code with those options.

The configure script is generated from an Autoconf template file (configure.ac).

The compiler and library dependencies of Abacus are expressed here, as are user-selectable

compile-time options. The configure script is a portable way of checking the capabilities

of the C++ compiler, libraries, and hardware in a given environment; it also provides a

simple way for the user to look at the available compile-time options with ./configure
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--help. The result of the configure script is a common.mk file which is loaded by the

Makefile, and a config.h file which is included by the Abacus source code. The former

includes compiler flags and library paths, and the latter includes macro definitions that

can be used to enable or disable code features based on library availability or user choice.

The configure script also outputs a summary of the options the user has selected

(output has been truncated for brevity):

------------------------------------------------------

Abacus has been configured with the following options:

Double precision: no

Near field max radius: 2

Near field block size: 64

AVX-512 directs: no

AVX-512 multipoles: yes

AVX FOF: yes

Spherical Overdensity: no

GPU directs: yes

Compute FOF-scale density: yes

MPI parallel code: no

Near-force softening technique: single_spline

Maximum GPUs: 2

Cache line size: 64

CXX: icc

MKL FFT: yes
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------------------------------------------------------

This Autoconf-based approach to the build system was inspired by Athena (Stone

et al. 2008).

If a non-essential library is missing, the configure process will still continue but the

absence is noted in the config.h file so that the code can compile appropriately. If CUDA

is missing, for example, the user will be warned but the compilation will still proceed with

only CPU directs.

Each submodule of Abacus has its own Makefile; notably, singlestep, convolution,

and the GPU module. Each of these loads common.mk from the Abacus root directory

(produced from common.mk.in by configure with the appropriate substitutions). Our

old model used separate Makefile.in files in each directory; this led to lots of repetitious

code and inability to run maintenance commands like make clean if Abacus was not

already configured. The common.mk approach centralizes inclusion of configure output,

although some narrow configure options are broadcast to all Makefiles as a result.

This approach to Makefile organization was inspired by Corrfunc (Sinha & Garrison

2017b).

This model also avoids recursive Makefiles, which is highly desirable because other-

wise a submodule’s compilation might be different depending on whether make was called

from a parent directory (where the parent Makefile has the chance to edit variables before

the child Makefile sees them).

61



CHAPTER 2. ABACUS

2.15 Cluster Commissioning

Abacus has been commissioned on a number of supercomputer clusters; in particular,

the El Gato GPU cluster of the University of Arizona7 which was used to run the Abacus

Cosmos suite (Garrison et al. 2018, Chapter 5 of this thesis) and Summit (the number

one computer on the Top500 as of November 20188) at Oak Ridge National Lab9. Each

has brought unique challenges, but overall Abacus has been very successfully ported to a

wide range of architectures. Summit, in particular, is notable as a non-Intel architecture!

The port to El Gato happened in the very early days of Abacus. El Gato was one

of the first clusters we commissioned on that we had not built ourselves, and thus we had

to deal with lack of root access. In particular, the build system required an overhaul to

support the flags and paths used by the El Gato compilers consistently across all Abacus

modules. El Gato also was our first cluster with a centralized network file system and

queue system; thus, we added new functionality to organize outputs, launch simulations on

through a job scheduler, and re-queue interrupted simulations. For environment setup, we

developed an Abacus“modulefile”that is set up upon installation in cluster environments

that support the module system. These and the other tools we developed to manage suites

of simulations continue to be used in our latest cluster deployment on Summit.

We commissioned Abacus on Summit in 2018. Summit is unusual as an IBM

PowerPC-based system; thus all of our Intel AVX optimizations were unusable and we

7elgato.arizona.edu

8https://www.top500.org/lists/2018/11/

9https://www.olcf.ornl.gov/summit/
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had to revert to plain-C code in several places. The far-field AVX code was notably slower

as a result, as it involves a triple nested “diagonal” loop over multipole orders that a com-

piler can’t unroll. Using Python meta-code to write a plain-C unrolled version was very

successful, achieving nearly AVX speeds with no explicit vectorization. For even better

performance we may revisit this with AltiVec instructions in the future.

The port to Summit required a rewrite of the Abacus build system; the compiler

setup was simply too different from anything we had used before. Even familiar compilers

like gcc would not accept some common arguments on Intel platforms like -march=native.

The result was the build system described in Section 2.14; we can now detect both the

compiler and architecture and select compiler flags based on the combination of the two.

Summit is extremely fast; we can sustain 50 Mp/s per node without much tuning.

This speed makes it difficult for any disk system to keep up, even the node-local NVMes.

As such, we developed the full ramdisk interface described in Section 2.11.

2.16 Abacus Hardware

2.16.1 Overview

Abacus was designed for massive simulations on modest hardware, accessible to a de-

partment or lab budget instead of a national supercomputer facility. As a development

environment and proof of concept, we have built a number of machines in a computer lab

at the Harvard-Smithsonian Center for Astrophysics—building, maintaining, and tuning

these machines has been an important part of this thesis. We will discuss the hardware
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choices and trade-offs that go into building a computer for Abacus. The performance

characteristics of Abacus and the available hardware has evolved over the years, so we

will also discuss how the design balance has changed.

2.16.2 Disk

For massive single-node simulations, the only “unusual” Abacus hardware requirement

is a fast array of disk. Consider the I/O demands: 32 bytes per particle—12 bytes for

positions, 12 for velocities, and 8 for auxiliary/particle ID—and 356 bytes per cell—

4(p + 1)2 bytes for multipoles (where p is the multipole order, usually 8) and 32 bytes of

indexing information. For a typical value of 50 particles per cell, we thus have 2 TB of

particle data and 0.4 TB of multipole data for a 40963 simulation. To sustain a rate of

20 million particles per second (Mp/s), the total I/O demand (read + write) is thus 1300

MB/s for the particle data.

We usually supply this with hardware RAID (“redundant array of independent disks”)

which distributes files over multiple disks to provide some combination of redundancy,

performance, and capacity. We typically use RAID 5 which maximizes performance and

capacity while still providing one disk’s worth of redundancy (state redundancy is not too

important, as it is straightforward to write a simulation checkpoint to another file system).

A single hard drive provides about 200 MB/s under favorable conditions, so with a 10

disk RAID 5 system we could expect 1800 MB/s peak performance (one disk is lost to

redundancy). In practice, we usually achieve 1400 MB/s sustained from 10 disks; at least

some of the loss appears to be due to system load (that is, disappears with blocking I/O).

The precise mechanism by which this operates (slower I/O threads? memory bandwidth
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pressure? read/write patterns?) is unknown, but 1400 MB/s is enough to support a

compute rate 20 Mp/s. We have not noticed any appreciable difference between the XFS

and EXT4 file systems, even with manual RAID tunings for the latter.

Spinning hard drives read and write more slowly towards the center of their platters.

Hard drives consist of several metallic disks (much like small, metal DVDs) with constant

areal bit density. Thus, more bits pass under the read head per rotation on the outer edge

than the inner edge. And since the drives rotate at a fixed rate (typically 7200 RPM),

this translates to faster I/O on the outer portion of the platter.

This can be leveraged for better performance. Hard drives can be “partitioned” into

logical segments for use by different file systems; this logical partitioning corresponds

different physical regions of the hard drive. By simply creating two partitions per hard

drive, one thus segments each drive into a inner, slow partition and an outer, fast partition.

The fast partitions can be linked together in RAID, as can the slow partitions. This is a

convenient split for Abacus, where we have state files to which we want fast access and

output files where performance is not critical. In practice, the fast partition is consistently

20% faster than the slow partition which translates directly to 20% increase performance

in our large, I/O limited sims. Keeping a “clean” partition for the state files also has the

benefit of minimizing file fragmentation from small files like logs.

The Abacus slab I/O pattern of large, bulk reads and writes is quite amenable to

RAID with large stripe sizes (the stripe size is the atomic unit of RAID operations). The

exception is the convolution: we most hold cross-slab pencils of cells in memory in order

to do the x-FFT which requires touching all files in small chunks at a time. Thus, we

prefer to use SSDs (solid-state drives) which have nearly no I/O latency and are thus
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better than hard drives at handling small files (or many files in small chunks). However,

with enough RAM, one can load very large chunks of every multipole file into memory at

once, so the cost of using an HDD instead of SSD is not so great.

We note that modern NVMe SSDs (solid-state drives) can provide well over 2 GB/s

sustained from a single drive. However, they are 10× more expensive per GB than HDDs

and are only rated for about 1 PB of write—easily achieved in a single large simulation!

The largest drives are still only around 1 TB so scaling beyond 40963 in a single node is

also not easy. We have used NVMes successfully in more modest, 20483 simulations on

hal—those results are presented in Chapter 3.

In almost all cases, we use direct I/O to bypass operating system caching of files.

Our slab-oriented I/O means that we are performing exactly one read and write of each

file per time step, meaning we would not benefit from caching. One exception where we

do not use direct I/O is when performing I/O on network file systems. These often do

not respond well to direct I/O when they support it at all.

2.16.3 GPUs: Tesla vs GeForce

In all Abacus machines that we have built ourselves (see below), we have used consumer-

level NVIDIA GeForce cards instead of the HPC-marketed NVIDIA Tesla cards. The

primary difference is that the double-precision performance is crippled on the GeForce

cards, but our use of cell-centered particle coordinates ensures that our precision is much

better than box-centered single precision anyway (see the end of Section 2.2). The price

difference is considerable: a Tesla P40 cost about $6K at launch, while the GeForce 1080

Ti—the equivalent consumer card—cost only $700. Our performance when porting to
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Tesla cards on clusters has not been appreciably different.

2.16.4 The Abacus Development Computer Cluster

Production Machines

The first generation of Abacus machines (ted and charlie, built before the start of

this thesis) relied heavily on commodity hardware designed for the computer enthusiast

community (gamers). ted and charlie each contained a single six-core Intel i7 CPU that

was overclocked to about 3.6 GHz, 64 GB of RAM, sixteen 1 TB hard drives in RAID

5, and dual NVIDIA GeForce GTX 690 graphics cards. The 690s were outliers of their

generation, as they each contained two Kepler GPUs for a peak theoretical compute rate

of over 5 TFLOPs. This would not be surpassed in a single card for four more generations

with the advent of the 1080 (although cards did become cheaper and less power-hungry in

the intervening years). ted and charlie proved that, in 2012, Abacus could run large,

40963 particle simulations at rate of 8 million particles per second on a single machine

costing less than $10K. ted and charlie are still useful production machines today.

The next few generations of computer hardware brought incremental improvements.

We attempted to build another machine shortly after ted and charlie, but the disk

system was very unstable, possibly due to hardware RAID or backplane issues. We

eventually re-purposed the GPUs (TITAN Xs) for charlie.

In 2016, we built our first Intel Xeon-based machine, called franklin. In contrast to

the six 3.6 GHz cores of ted and charlie, franklin had dual 12-core processors clocked

at 2.2 GHz. To see a speedup, we thus had to improve the parallelism of many areas of
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the code; some of our efforts are documented in Section 2.17. franklin had more (and

faster) disk than our previous builds which made it suitable for even larger simulations.

The large amount of RAM (256 GB) has proven useful for a few analysis tasks, such as

power spectrum computation, where it is convenient to hold large arrays in memory.

The rise of many-core CPUs as a route to increased performance instead of increasing

clock rates is unsurprising in some ways. The amount of power dissipated by a CPU

scales as frequency cubed, while adding more cores is a linear cost10. Of course, to

see a speedup, applications must be capable of utilizing many cores efficiently. Abacus,

somewhat by luck and somewhat by design, is such a code. The computation of multipoles

in cells is embarrassingly parallel and compute-dense, and the memory access patterns are

predictable and highly local.

In 2017, we built hal, our latest machine. hal was different than previous generations

in a few important ways: it was our first machine with substantially faster GPUs than

ted and charlie; it was our first AVX-512 machine; and it was our first build with NVMe

drives. hal’s NVIDIA 1080 Ti GPUs were nearly twice as fast as the previous generation,

and the Abacus GPU rate scaled almost perfectly in line with expectations. This was a

major validation of the scalability of our GPU data model (Section 2.5).

The AVX-512 processors were an opportunity to revisit legacy AVX assembly code in

the far-field multipoles and Taylors. AVX-512 allows for processing of 16 floats at a time,

instead of the 8 floats of AVX. Thus, the promise is a two-fold speedup, although this is

rarely realized in practice11. This is partly because processors down-clock while executing

10https://software.intel.com/en-us/blogs/2014/02/19/why-has-cpu-frequency-ceased-to-grow

11See, for example, Corrfunc (Sinha & Garrison 2017b), where a 1.6× speedup was considered very
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the power-hungry AVX-512 instructions, but instruction latencies can be different as well.

We only saw a 30% speedup from rewriting the assembly code with AVX-512 intrinsics,

but the new Python meta-code used to generate the AVX-512 C++ code for different

multipole orders turned out to be reusable for unrolled pure-C multipoles when we ported

to the Summit platform that supported neither AVX nor AVX-512 (Section 2.15).

The two Samsung 960 and two 970 Pro 1 TB NVMe drives of hal were a major

success. We initially had several worries: that they would wear out (they are only rated

for about 1 PB of write); that they would throttle under sustained I/O; and that the

interior temperature of hal would cause them to burn out more quickly (the M.2 slots

were right under the GPUs on the motherboard). While we have some evidence for

thermal throttling of the 960s, the 970s were extremely stable and provided 2.8 GB/s

sustained read and 2.5 GB/s sustained write in the Euclid simulation of Chapter 3—by

far the fastest disk system we have ever used (RAID or single drive). The drives are still

stable and in use today, even after 2 PB written.

Our initial impetus to supplement the 960 NVMes with the 970s was a mysterious

performance decline in the write speed of the 960s: over the course of a week, their

performance declined from 2 GB/s to 350 MB/s, nearly HDD speeds. This crippled the

convolution rate in particular. We initially attributed it to throttling or hardware failure,

until we realized that the drives needed to have the TRIM command issued to recover

free blocks from deleted files. This immediately restored the full drive speed; we now have

scheduled TRIM enabled.

successful.
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2.17 Notable Simulations

In addition to the Euclid code comparison and Abacus Cosmos simulations presented in

Chapters 3 & 5, we have completed a few other notable simulations. These have served

as proofs-of-concept and helped us explore specific scientific goals.

In Zhang et al. (2017), we presented our most massive single-node simulation to

date12: 51203 particles (130 billion) in a 250h−1 Mpc box, for a particle mass of 1×

107h−1 M�. The simulation was designed to explore the detectability of the clustering of

the first galaxies with a JWST 13 arcmin deep-field survey. The simulation was evolved

from z = 200 to 8 in eight weeks on the franklin hardware. In our analysis, we found

that the extreme bias factors (5–30) of massive halos at this epoch lend themselves to

detection of clustering with only 500–1000 objects, assuming that the detected galaxies

occupy the most massive halos.

This was our first simulation at this scale and exposed many bugs and inefficiencies.

In the far-field, this was the first time where CPD3 exceeded 2 billion—the maximum value

representable by a 32-bit signed integer. The legacy far-field code (Multipoles, Taylors,

and Convolution) had to be carefully updated and re-validated to be 64-bit safe. We

also updated the far-field code to store Multipoles and Taylors in 32-bit floats on disk

instead of 64-bits, halving the I/O load. This had no measurable impact on the accuracy

of the forces but did expose an implicit CPD3 scaling in the amplitude of the Taylors which

caused the value to exceed 1038—the maximum representable 32-bit float.

Our initial rate was around 8 million particle updates per second (Mp/s), driven

12Aside from a few test steps of 70003 on Summit
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entirely by CPU work—a combination of Multipoles, Taylors, CPU pencil construction,

and the Kick. This was our first major simulation on franklin and thus our first with

more than 20 cores which exposed the limits of some of our parallelization schemes. The

improvements implemented for this simulation include:

1. Multiple I/O threads (one per disk system)

2. Parallelization of the GPU pencil construction indexing

3. A queue system for GPU work units

4. Thread affinity functionality for better NUMA awareness

5. New multi-threaded partition and merge-sort implementations for the insert list (by

exploiting our knowledge of the sort key distribution, we can outperform the Intel

TBB parallel merge sort)

6. Multi-threaded insert list insertion based on “gap tracking”

7. Multi-threaded construction of merge slabs

8. Multi-threaded I/O in the convolution driver

9. A parallel wrapper to the N-body Shop’s friends-of-friends halo finding code13 with

a 2D domain decomposition, suitable for out-of-core analysis on massive sims.

10. Commissioning with the Intel compiler suite (in particular using the Intel MKL

FFT; about 20% faster than FFTW)

13https://faculty.washington.edu/trq/hpcc/tools/fof.html
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11. “Spin detection”: tracking of which dependencies are blocking the pipeline from

proceeding

12. New GPU performance reporting mechanism

13. New pipeline step to immediately transpose particle positions upon load (matches

the GPU data model)

These improvements brought the simulation speed from 8 to 20 Mp/s, just brushing the

disk speed.

Our next large simulation on franklin followed shortly thereafter: a more tradi-

tional, BAO-oriented simulation dubbed “FigBox” of 40963 particles in a 3.2h−1 Gpc box,

for a particle mass of 4×1010h−1 M�. After the JWST simulation, it was apparent that

the GPU pencil construction model was a weakness, as it involved two copies: packing

the particles from slabs into pencils, and from pencils into pinned memory for staging to

the GPU. Large copies are expensive operations, particularly on Intel platforms where

the bandwidth to main memory is only about 10 GB/s per core (under ideal conditions).

Thus, we introduced the “deferred copy” GPU pencil model described in Section 2.5. The

salient part is that a PencilPlan is constructed for each source and sink pencil that con-

tains indexing information but waits to copy any particles until the GPU work unit comes

up for execution. At that point, the particles are packed directly from the slabs into the

pinned memory.

This model was very successful, with the overall CPU work running about 30% faster.

Unfortunately, the disks could only supply 22 Mp/s, so the wall-clock time to completion

was still about 8 weeks.

72



CHAPTER 2. ABACUS

FigBox has been an important testing ground for on-the-fly group finding. With its

large volume, it finds rare peaks and filaments in the cosmic density field that might be

missed in a smaller box, and thus helps us understand the percolation properties of various

algorithms. This is particularly important for on-the-fly group finding, where the largest

filament sets the number of slabs we must hold in memory, and thus the requisite amount

of RAM per node. A FoF linking length of 0.2, for example, finds a 20h−1 Mpc group

that that is actually a string of 9 or 10 visually obvious halos embedded in a filament.

The improvements implemented for these simulations were important preparation for

the Euclid simulation to be presented next in Chapter 3.

2.18 Current Limitations

The current version of Abacus computes the near field with brute-force N2 summation.

While GPUs are quite good at this sort of compute-dense operation, even they can be

overwhelmed by the “Coma Clusters” of a simulation (halos with millions of particles).

Since the near field is compact, any open-boundary-condition Newtonian gravity solver

may be swapped in, however. We currently have a prototype tree implementation for

accelerating the force computation in dense clusters. The trees are constructed and walked

on the CPU and the interaction sets are executed on the GPU. Our choice of when to use

a tree (and what leaf opening criteria to employ) is determined by the usual efficiency-

accuracy trade-off; this work will be presented by Maksimova et al.

All particles in Abacus currently share a global time step. The time step changes

throughout the course of the simulation; we set it based on the smallest dynamical time
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anywhere in the box (usually at the center of a dense cluster), so the method is very

accurate (see Section 3.4.2). However, we waste a large amount of effort integrating

trajectories of low-acceleration particles (e.g. in voids) with ∼ 1000 steps when they could

be accurately represented with ∼ 150. To address this, we have developed a prototype of

a leapfrog multi-stepping scheme (in the spirit of Quinn et al. 1997) in which all particles

are kicked with a large global time step and then individual halos are sub-cycled with a

smaller time step. The scheme preserves the pair-wise of particle interactions and is thus

momentum-conserving. This work will also be presented in Maksimova et al.

Microstepping does require identification of halos on-the-fly to identify accurately

regions of small dynamical time (Section 2.10); this is time-consuming compared to the

nominal force computation, even with our slab-oriented optimizations. The global-step

savings of microstepping will likely make this a worthwhile tradeoff, but we are still in-

vestigating group finding optimizations or faster algorithms that can still be implemented

in a slab pipeline.

As discussed in Section 2.11, the overheads of invoking two processes for every time

step is starting to become noticeable on fast platforms like Summit and hal. Ramdisk

memory is slow to map (although still far faster than disk I/O), and pinning GPU memory

takes at least a few seconds. Eventually, we may thus consider a single-process model for

Abacus.
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2.19 Looking Forward

2.19.1 Public Release

We plan on a public release of Abacus in 2019. The major outstanding task before this

can happen is documentation. Most of Abacus is documented, especially the top-level

interfaces, but the documentation is spread out among several locations (source code

comments, standalone notes describing interfaces, publications, and a PDF user guide)

and written in non-standard formats across at least two programming languages (Python

and C++). We will need to collect this documentation into a single user-friendly interface,

likely using a Doxygen + Breathe + Sphinx + ReadTheDocs pipeline. We are currently

testing a prototype of this procedure. A fair amount of new documentation will need to

be written too, particularly detailing the installation process and examples of end-to-end

analysis for new users.

We will also have to consider how to distribute the code. Given its Python top-

level interface, it is tempting to host the project on PyPI or Anaconda (in addition to

GitHub). However, the current build system requires the user to recompile the code in

order to change certain physics options (such as softening and local density computation).

This is orthogonal to the Python package model. We will have to decide whether enough

of these options can be efficiently implemented as runtime settings that it makes sense

to distribute a “compile-once” Python package, or whether users will be required to build

from source (or even a hybrid model where the Python layer triggers a recompilation

based on user settings).
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2.19.2 Simulation Campaigns

We have submitted a proposal for a major Abacus simulation campaign in support of

DESI to the U.S. Department of Energy’s “ASCR Leadership Computing Challenge”. We

have proposed an ambitious set of 97 simulations in 2h−1 Gpc boxes of 70003 particles

each, for a particle mass of 2× 109h−1 M�, to be run on the DOE’s Summit computer

with parallel Abacus (see Section 2.15). We have requested 300K node-hours to complete

this set of 33 trillion particles, with a total of 1.6 PB of data products.

The proposed simulations span a range of cosmologies: 25 boxes in one cosmology

and 6 in five others, with single-box excursions to 34 additional cosmologies for interpo-

lation/emulation and 8 additional for warping using the technique of Chapter 6.

If awarded, these simulations will form a core sample of catalogs by which DESI

analysis will be validated. Abacus’s simultaneous computational economy and unprece-

dented accuracy will ensure that DESI analysis can be declared to be as robust as the

methodology, not merely as robust as the simulations.

We are well-situated to execute this simulation campaign, having already executed

a similar campaign (at much smaller scale) with the Abacus Cosmos simulations. The

pipelines developed there for configuring, launching, and monitoring simulations in a

cluster environment will immediately reusable here, even if our data management pipeline

has to be scaled up. Perhaps most importantly, we have learned many lessons about

the ways running a suite of simulations can go wrong. In one memorable incident, I

accidentally launched a set of simulations that I thought had different initial condition

seeds but instead had identical seeds, such that we ended up simulating the same box

many times over! This was not a total loss, as it provided the chance to check the end-to-
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end reproducibility of Abacus (which was quite good; the small-scale cross correlation

was perfect within 10−6 at the softening scale).
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A High-Fidelity Realization of the

Euclid Code Comparison N-body

Simulation with Abacus

This thesis chapter was originally published as

Garrison, Lehman H., Daniel J. Eisenstein, Philip A. Pinto 2019, MNRAS,

485, 3370

Abstract

We present a high-fidelity realization of the cosmological N-body simulation from the

Schneider et al. (2016b) code comparison project. The simulation was performed with our

Abacus N-body code, which offers high force accuracy, high performance, and minimal

particle integration errors. The simulation consists of 20483 particles in a 500 h−1Mpc box,
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for a particle mass of 1.2×109 h−1M� with 10 h−1kpc spline softening. Abacus executed

1052 global time steps to z = 0 in 107 hours on one dual-Xeon, dual-GPU node, for a mean

rate of 23 million particles per second per step. We find Abacus is in good agreement

with Ramses and Pkdgrav3 and less so with Gadget3. We validate our choice of

time step by halving the step size and find sub-percent differences in the power spectrum

and 2PCF at nearly all measured scales, with < 0.3% errors at k < 10 Mpc−1h. On large

scales, Abacus reproduces linear theory better than 0.01%. Simulation snapshots are

available at http://nbody.rc.fas.harvard.edu/public/S2016.

3.1 Introduction

Cosmological N-body simulations are the primary tool for forward modeling the theory of

large-scale structure to observable quantities like the spatial distribution of galaxies. As

observations improve, the comparison of the forward model with observations becomes

increasingly sensitive to systematic errors in the N-body simulations. Some systematics

can be checked analytically, such as the recovery of linear theory on large scales, but most

rely on “convergence testing”, in which a parameter of the simulation (such as the time

step) is moved towards the continuum value until the answer stops changing (to some

tolerance). Such tests can be prohibitively expensive (see DeRose et al. 2018 for a recent

exhaustive effort) and are not guaranteed to converge to the physical answer.

A common additional check is to compare the “converged” results from multiple,

independent codes. While not a guarantee of physical accuracy, agreement indicates

control over systematics related to the numerics, to the extent that different codes use

different numerical techniques. This is the approach of code comparison projects like
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Heitmann et al. (2008) and Schneider et al. (2016b, hereafter S2016). The latter presents

the code comparison project from the Euclid Cosmological Simulations Working Group,

which compared the matter power spectrum from the Pkdgrav3 (Potter et al. 2017),

Ramses (Teyssier 2001), and Gadget3 (Springel 2005) codes.

A third path to assessing code accuracy in the non-linear regime is through scale-

free simulations. In these tests, a power-law power spectrum is used in an expanding

ΩM = 1 background, such that the clustering on small scales should be a rescaling of the

clustering on large scales at a later time. Any deviation from this self-similarity must

be due to finite box size, finite particle mass, or inaccurate numerics. The breakdown of

this self-similarity can be used to identify halo mass resolution limits and other complex

non-linear systematics; this will be our approach in an upcoming paper (Joyce et al., in

prep.).

In this work, we contribute Abacus’s result to the S2016 code comparison project.

Abacus is a GPU-accelerated code for cosmological N-body simulations; it offers excellent

force accuracy and minimal integration errors of the particle trajectory due to the small

global timestep used. It also employs a compact spline softening kernel, which minimizes

leakage of force softening to large scales. Abacus’s speed allows us to perform convergence

tests at scale; we do not need to sacrifice volume or mass resolution to complete the tests

in a reasonable amount of time with modest computational resources.

The paper is organized as follows. In Section 3.2, we discuss the Abacus code and

performance in the context of the S2016 simulation. In Section 3.3, we compare the

Abacus matter-field clustering results with Ramses, Gadget3, and Pkdgrav3. In

Section 3.4, we show validation tests for various Abacus code parameters. We discuss
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our findings in Section 3.5.

3.2 Abacus

The details of Abacus code are presented in Chapter 2. In this section, we will focus on

the performance of Abacus on the S2016 problem and discuss the accuracy in Section

3.4.

3.2.1 Performance: Design

We present the performance of Abacus for the S2016 20483 simulation on one node. The

performance and low memory requirements enabled by the exact force split mean that

Abacus does not need a computer cluster to complete large simulations in a reasonable

amount of wall-clock time; indeed, Abacus presently only supports single-node operation.

We built the node used in this work, called hal, specifically for Abacus using com-

modity computer hardware. hal is a dual-socket Intel platform with two 14-core Intel

Xeon Gold 6132 @ 2.60 GHz, 128 GB DDR4-2666 RAM, and two NVIDIA GeForce GTX

1080 Ti GPUs. HyperThreading is disabled and the CPU frequency scaling governor is

set to performance. hal is equipped with four 1 TB Samsung NVMe SSDs (two 970 Pro,

and two 960 Pro). We used the Intel compiler icc 17, and NVIDIA CUDA 9.2. hal cost

about $13000 and consumes approximately 1 kW under load.

The NVMe drives store the particle and convolution data. Since we only hold 1%

of slabs in memory at a time, and since the CPU and GPU compute rate is so high,

the drives holding the particles must be similarly fast. For this work, we used the two
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970 Pros for the particle data (440 GB), and the two 960 Pros for the convolution data

(multipoles and Taylors, 102 GB total). While we could have fit the whole 20483 problem

on a single SSD, we rely on multiple SSDs to provide the throughput to keep up with

the GPU and CPU. For larger simulations, we employ RAID arrays of HDDs, which offer

lower performance but a better price/GB ratio.

During singlestep, since we can compute the near field on GPUs and the far field

on CPUs, we can overlap their computation. Typically, a few CPU cores are dedicated to

GPU communication, a few are dedicated to IO, and the rest are used for far-field forces

and other CPU work. Thus, we have the IO, GPU, and CPU operating in parallel. For

this work, we used 6 cores to prepare GPU work, 1 core for IO, and 21 for CPU work.

We carefully control the assignment of threads to cores (both OpenMP threads and

our own GPU and IO threads). This is to prevent threads from switching cores and

interfering with each other and to maintain NUMA locality. In most contexts, we statically

schedule the OpenMP threads over y-rows, so particles will largely stay on their own

NUMA node.

For this simulation, we use K = 693, multipole order p = 8, and near-field radius

R = 2. This yields 25.8 particles per cell. K was chosen post hoc to optimize the trade-off

between the late-time N2 work and the increased CPU work and IO for all time steps.

We note that the S2016 particle mass (1.2× 109 h−1 M�) is smaller than would be

optimal for the current version of Abacus on the hal hardware. At late times, the

N2 work from the largest halos dominates the runtime; the largest cell has over 200,000

particles by the end of the simulation. To counteract this, we were forced to choose a

relatively large K, which tends to under-fill the AVX-512 vectors in most cells and increase
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the FFT work. This decreases far-field performance. Furthermore, the multipole/Taylor

data volume increases as K3, thus slowing down the convolution step (which is strongly

IO limited). Even a factor of 2–3 increase in particle mass would cause the GPU work to

be subdominant to the CPU work, increasing the total speed of the simulation.

The small force softening also leads to larger particle accelerations in the centers

of halos. Since Abacus is a globally time-stepped code, this forces us to take one or

two thousand time steps to z = 0, instead of one or two hundred, as is common in codes

with adaptive time stepping. Future versions of Abacus will address this with on-the-fly

identification of halos and refined time stepping within those halos; we call this scheme

“microstepping”. This will allow us to take larger global time steps and have the benefit

of increasing the compute load for every time we load the particles. This should bring

the compute performance back in line with the disk performance. The former currently

outstrips the latter, except at late times for the low particle masses considered here.

For truly massive simulations, we are developing a parallel version of Abacus based

on the existing slab decomposition suitable for parallelization over a few dozen nodes.

While it may seem that the hal hardware is specialized (e.g. the combination of

fast local disk and several GPUs on a single node), we note a trend in supercomputing

towards this “fat node” design. For example, the Summit1 supercomputer (number 1 on

the Top5002) has 1.6 TB of NVMe SSD and six NVIDIA Volta V100 GPUs per node. We

expect Abacus to be well-suited to Summit and Summit-like architectures.

1https://www.olcf.ornl.gov/summit/

2https://www.top500.org/list/2018/11/
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Figure 3.1: Abacus runtime per step. The singlestep GPU and CPU work is over-

lapped, so the wall-clock time is the maximum of the two. The convolution occurs as a

separate step between singlestep invocations. The spikes in GPU runtime are the out-

put steps, where the CPU is too busy to prepare work for the GPU at full speed. Minor

ticks on the redshift axis are steps of ∆z = 0.1.

3.2.2 Performance: Results

Using the exact particles provided by the Euclid Cosmological Simulations Working

Group3 [i.e. no corrections to the initial conditions in the style of Garrison et al. (2016)],

Abacus executed 1052 time steps from zinit = 49 to z = 0 in 107 hours (4.5 days) for a

3https://www.ics.uzh.ch/~aurel/euclid.htm
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mean rate of 23 million particles per second per step (Mp/s). The singlestep work took

87 hours, and the convolution 21 hours. In singlestep, the GPU work (near-field force)

was fully masked by the CPU work until about redshift z = 1.5 (step 600), after which

it quickly became dominant (Fig. 3.1). singlestep started at 46.0 Mp/s and ended at

10.8 Mp/s due to the increased GPU work. Including the convolution, Abacus started

at 33.6 Mp/s and ended at 9.9 Mp/s. See Fig. 3.2 for a visualization of the final state.

A timing breakdown of the first Abacus time step is given in Table 3.1. This timing

is representative of all time steps, except for the increased GPU work towards late times,

as noted in the table.

In Fig. 3.3, we show the measured GPU wall-clock performance in terms of number

of pairwise spline interactions computed per second. The performance increases as the

compute density (interactions per particle) increases, peaking around step 700 (z = 1) or

1.2×104 interactions per particle. Afterwards, the performance declines, possibly due to

worsening load balancing from the increasing density contrasts between cells.

We also give a rough estimate of the theoretical peak performance of our two NVIDIA

1080 Ti GPUs. We assume 10.6 TFLOPS per GPU (see above), which assumes all op-

erations are fused multiply-add (FMA). In our spline kernel, we count 22 additions and

multiplies (not all of which are FMA), a reciprocal square root (rsqrt), and a min. We

count the rsqrt as one FLOP and ignore the min, even though we expect these are poor

approximations. We thus derive a conservative 23 FLOP estimate, yielding a theoretical

peak of 920 billion direct interactions per second (GDIPS).

We measure a peak Abacus performance of 485 GDIPS, which is 52% of our esti-

mated theoretical peak. We consider this excellent performance. This measurement uses
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wall-clock time while at least one Abacus GPU thread is running and thus includes PCIe

bus transfer overheads and load imbalancing.

A “notch” of 10% slower CPU performance is visible between steps 837 and 1000

in Fig. 3.1. After step 836, the simulation was manually paused for several minutes

to run fstrim on the SSDs to ensure consistent write performance (we had observed

catastrophic write performance decreases in the recent past that were fixed with TRIM).

Upon resuming, the singlestep performance was slightly slower in memory-bandwidth-

bound operations like Transpose Positions. At step 1000, the simulation automatically

paused for several minutes to write a backup state. Upon resuming, the bandwidth issue

disappeared. We do not have compelling explanation for this issue, but it also had no

impact on the wall-clock time, since it was completely masked by the GPU compute time.
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Table 3.1. Wall clock timing for the first Abacus time step of the S2016 box, z = 49.

Units of “Mp/s” mean millions of particles per second. “DP-FLOPS” means

double-precision floating-point operations per second. Only rates for the dominant

sub-steps are shown. Percentages are relative to their parent step. “Non-blocking” means

other CPU actions can proceed while that action is running.

Action Time [s] % Rate Notes

Total 255 100 % 33.6 Mp/s 9.9 Mp/s at z = 0

singlestep 187 73 % 46 Mp/s

CPU Work 187 100 % 46 Mp/s

CUDA Initialization 7.3 3.9% Pinning memory

Check Slab Integrity 1.6 0.9%

Transpose Positions 3.0 1.6 %

Prepare Near Force 7.6 4.1 %

Taylor Force 85.2 45.5 % 100 Mp/s

Kick 10.1 5.4 %

Drift 7.8 4.2 %

Multipoles 48.3 25.8 % 177 Mp/s

Finish 14.7 7.9 %

Waiting for GPU or IO 1.0 0.5 %

GPU Near Force (non-blocking) 137 73 % 62 Mp/s 11 Mp/s at z = 0

Disk IO (all non-blocking) . .

Particle Data Read 100 53 % 2.8 GB/s 285 GB read

Particle Data Write 112 60 % 2.5 GB/s 285 GB written

Taylors Read 30.6 16 % 1.7 GB/s 108 GB read
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Figure 3.2: A 0.7 h−1 Mpc thick slice through an Abacus realization of the S2016 box

at z = 0. Color indicates projected surface density.
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Figure 3.3: GPU performance for the near-field pairwise force computation. The theo-

retical maximum is computed assuming 10.6 TFLOPS per GPU and 23 FLOP per direct

interaction (spline kernel). The latter is a conservative lower limit and we surmise that

our peak performance is actually larger than the 52% of the ideal maximum shown here.
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3.3 Code Comparison Results

3.3.1 Power Spectrum

We repeat the power spectra tests of S2016 on the z = 0 and z = 2 particles (except for

Gadget3 z = 2 particles, which were unavailable) and add Abacus’s results. We use

our own power spectrum code, which uses triangle-shaped (TSC) cloud mass assignment

and TSC-alias window deconvolution (Jing 2005). We use a 35003 FFT mesh and find

excellent agreement with the previously reported results. The Abacus result lies between

Ramses and Pkdgrav3 at both z = 2 & z = 0 (Figures 3.4 & 3.5).

As observed in S2016, the codes do not agree even on the largest scales at both

redshifts at the 0.5% level. This motivates us to check the analytic linear theory prediction

of the power spectrum on these scales in Section 3.4.1. The largest disagreements are

on the smallest scales, however. This motivates our checks of the effects of time step

and softening in Sections 3.4.2 & 3.4.3, and our exploration of scale-free simulations in

Appendix A.

3.3.2 Two-Point Correlation Function

We extend the analysis of S2016 to the small-scale two-point correlation function (2PCF).

We use the corrfunc code (Sinha & Garrison 2017a) to measure the auto-correlation of

the matter density field out to 1 h−1 Mpc. We first downsample the particles by a factor

of two to reduce the pair-counting runtime.

The same trends that are visible in the small-scale power spectrum are visible in the
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Figure 3.4: Comparison of power spectra at z = 2. Gadget3 particles were not available

for this redshift.
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Figure 3.5: Same as Fig. 3.4 (comparison of power spectra) but at z = 0.
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2PCF analysis (Figures 3.6 & 3.7). The main trend that is qualitatively different from

the power spectrum analysis is that the Ramses clustering amplitude exceeds that of

Abacus on the smallest scales. This may be related to differences in the softening model.
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Figure 3.6: Comparison of 2PCF at z = 2. ε marks the softening length, and Λ marks

the mean particle spacing. Only compressed outputs were retained for Abacus particles

at this redshift, so some noise is apparent on small scales. A larger binning was chosen to

mitigate this effect. Gadget3 particles were not available for this redshift.
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Figure 3.7: Same as Fig. 3.6 (comparison of 2PCF), but at z = 0. Full-precision outputs

Abacus outputs were available for all but the Plummer softening line, hence the coarser

binning in that case.

3.4 Validation

In addition to the end-to-end, standalone tests described in Section 3.2 (the Ewald and

homogenous lattice tests), we validate the accuracy of Abacus specifically in the context

of the S2016 simulation. We test the recovery of linear theory, time step parameters, force

softening model, and far-field and near-field accuracy.
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3.4.1 Linear Theory

The S2016 codes do not agree on the power spectrum on the largest scales in the simu-

lation. Most notably, Ramses produces a 0.35% power deficit compared to Abacus at

z = 2, and Gadget3 produces a 0.45% deficit at z = 0. Motivated by this failure to agree

on linear theory, we test Abacus’s ability to recover the analytic result in the strongly

linear regime. We set up a 10243 particle simulation with a σ8 = 0.817/200 at z = 0

and otherwise the same parameters as the S2016 simulation. In particular, we hold fixed

parameters that could plausibly affect the accuracy, like the particles per cell and the

multipole order. To best mimic S2016, we used the ordinary Zel’dovich Approximation

[i.e. no corrections following Garrison et al. (2016)].

We evolve the simulation from zinit = 49 to z = 0 using 137 time steps and compare

the power spectrum at z = 2 and z = 0 to the linear power spectrum at those redshifts.

In both cases, we find better than 0.01% agreement on the largest scales (Fig. 3.8).

We find a deficit of power on smaller scales, towards kNyquist. This is expected. An

N-body system with finite particle mass should see a suppression of linear growth rate

towards the Nyquist wavenumber of the particle sampling, independent of force softening

or integration errors (Marcos et al. 2006; Garrison et al. 2016). The wavenumber scaling

of this effect is an excellent match to the analytic prediction (dashed line, Fig. 3.8), using

the k� kNyquist approximation of Marcos et al. (2006). We see that z = 2 consistently

shows less suppression of power, as expected: the suppressed quantity is the growth rate,

so a higher redshift gives less time for the suppression to accumulate in an absolute sense.
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3.4.2 Time Stepping

Parametrization

Abacus is presently a globally-stepped code; all particles share the same time step. At

the beginning of each step, the time step ∆a is chosen based on three criteria:

1. the step size in ∆ log(a) units must not exceed TimeStepDlna;

2. the step size must be less than TimeStepAccel times the maximum of vrms/amax

computed within each cell;

3. the step size times the maximum velocity must be less than 80% of a cell width.

The first criterion, set by TimeStepDlna, usually limits the step size at the begin-

ning of the simulation before particle accelerations become large. It ensures integration

accuracy even in the linear regime. We use a value of 0.03, or about 33 steps per e-fold

of scale factor. The successful linear theory test in Section 3.4.1 uses the same value and

thus validates this choice.

The second criterion, controlled by TimeStepAccel (also called η), becomes the

limiting factor as soon as two particles anywhere in the simulation come into a close

orbit. We nominally use a value of η = 0.15; we also try a value of η = 0.3 in Section

3.4, since we expect that our nominal choice is extremely conservative, given that we take

2200 global steps to z = 0 as a result.

In detail, for the second criterion we also compute a global vrms/amax and use the max-

imum of the global and cell-based values. This protects us from taking catastrophically

small time steps as a result of abnormally cold cells.
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The third criterion simply ensures that particles drift by at most one slab per time

step. This is necessary in order to keep the rolling window of slabs in memory small. In

practice, we rarely trigger this criterion.

A large number of global steps is undesirable because (1) it increases the IO load,

and (2) it wastes a large amount of computational effort integrating motions of low-

acceleration particles. This problem is particularly noticeable in the S2016 simulation,

which has a small softening length and thus a high contrast in the dynamical time scale

of halo and void particles. We intend to address this in a future version of Abacus with

our “microstepping” scheme (see Section 3.2.1). A large number of global steps does have

the benefit of minimizing integration errors in the particle dynamics, however, which is

useful in the context of checking code convergence.

Validation

We investigate the effect of varying the time-stepping parameter η , or TimeStepAccel, on

the matter field power spectrum and 2PCF. We try both η = 0.15 and η = 0.3. Abacus

takes 2206 and 1052 time steps, respectively, to z = 0. We find sub-percent differences in

the power spectrum to the smallest scales we measure (k = 22 h Mpc−1); the differences fall

to 0.4% above kNyquist = π/Λ = 12.9 h Mpc−1, where Λ = L/N1/3 is the mean interparticle

spacing. The differences are even smaller at z = 2.

Similarly, we find very small differences of less than 1.6% across the whole measured

range of the 2PCF at z = 0, which extends down to ε/2, or 5 h−1 kpc. This decreases to

1% at 2ε . Again, the differences are even smaller at z = 2.

In both metrics, the error caused by increasing the time step to η = 0.3 is smaller
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by about an order of magnitude than the disagreements among the different codes. Thus,

we consider our choice of η = 0.3 to be sufficiently accurate.

3.4.3 Softening

Parametrization

We investigate the effect of different force softening laws on our results. Our nominal

results use spline softening, but we also perform a simulation with Plummer softening.

In both cases, we use a Plummer-equivalent comoving softening length of 10 h−1 kpc (see

below). We use a timestep parameter of η = 0.15, which is the finer of the two timestep

criteria investigated above.

In Plummer softening (Plummer 1911), the F(r) = r/r3 force law is modified as

F(r) =
r

(r2 + ε2
p)3/2 , (3.1)

where εp is the softening length. This softening is very fast to compute but is not compact,

meaning it never explicitly switches to the exact r−2 form at any radius (in contrast with

spline softening). This affects the growth of structure on scales much larger than εp, as

we will see below.

Spline softening is an alternative in which the force law is softened for small radii

but explicitly changes to the unsoftened form at large radii. Traditional spline implemen-

tations split the force law into three or more piecewise segments (e.g. the cubic spline of

Hernquist & Katz 1989); we split only once for computational efficiency and to avoid code

path branching4. We derive our spline implementation by considering a Taylor expansion

4We implement our split as a single min operation which compiles to a conditional move rather than
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in r of Plummer softening (Eq. 3.1) and requiring a smooth transition at the softening

scale up to the second derivative5. This gives

F(r) =


[
10−15(r/εs)+ 6(r/εs)

2]r/ε3
s , r < εs;

r/r3, r ≥ εs.

(3.2)

This was first presented in Garrison et al. (2016).

The softening scales εs and εp imply different minimum dynamical times (an impor-

tant property, as this sets the step size necessary to resolve orbits). We always choose

the softening length as if it were a Plummer softening and then internally convert to a

softening length that gives the same minimum pairwise dynamical time for the chosen

softening method. For our spline, the conversion is εs = 2.16εp.

Comparison

In Figures 3.4 & 3.5, we see that Plummer softening produces a significant suppression of

small-scale power. The range is notable too: 1% effects extend even to k below kNyquist,

which itself is 24 times larger than the softening scale.

We see the same trend in the two-point correlation function in Figures 3.6 & 3.7: the

suppression of clustering extends to many times the softening length.

In both the power spectrum and the 2PCF, using spline softening brings us into

qualitatively better agreement with the other codes. Due to its compact nature, we

a costly conditional jump.

5A Taylor expansion in r2 is also possible, but we discard that solution due to a large plateau of

constant angular frequency near r ∼ 0 that we worry might excite dynamical instabilities.
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consider spline softening the more physically accurate of our two softening models.

3.4.4 Far-field Force

The main source of error in the far-field force is the finite multipole order p. Our nominal

value is p = 8, which gives excellent force accuracy for near-field radius 2 (see Section

3.2). To quantify this in the context of S2016, we re-ran the final state with p = 11

and compared the far-field forces in the first 6 slabs to the p = 8 result. Measuring the

fractional error as |f8− f11|/|f11|, we find the median error is 6.8×10−7, with only 0.28%

of forces worse than 1×10−4.

3.4.5 Near-field Force

The near-field force is essentially exact, since it is computed via brute-force N2 summation

(i.e. no tree structures or other approximations are used). The main source of uncertainty

is use of single-precision (32-bit) floating point values for the positions and accelerations.

This mainly enters as round-off error in the accumulation of the accelerations, but there

are other intermediate steps, like the re-centering of particle positions before they are

sent to the GPU, that may suffer similarly. To quantify these effects, we make a copy

of the final state in double precision, evaluate the forces, and compare the forces to the

single-precision answer. We find that only 0.038% of force errors are worse than 1×10−4,

which is an order of magnitude fewer than in the far-field. The median fractional error is

7.5×10−7.
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3.5 Discussion

We have presented a realization of the S2016 code comparison simulation using our Aba-

cus N-body code. Abacus has excellent force accuracy properties that give us confidence

that we are recovering the correct answer on most scales, especially in the linear regime

where other codes disagree on the answer. Indeed, our linear evolution tests show better

than 0.01% recovery of linear theory growth. We have validated our time step and force

accuracy parameters and found them to be conservative.

On small scales, the answer still depends on the choice of softening model. Even

matching dynamical times, we find that Plummer softening produces a significant sup-

pression of small-scale power. We consider this non-physical and prefer our compact spline

softening, which brings our small-scale results closer to that of Ramses and Pkdgrav3.

Gadget3 is still somewhat of an outlier, generally missing power across a broad range

of scales. Part of this could well have to do with softening model differences, given the

large effect we saw when switching from Plummer to spline. It may be illuminating to

compare these results to those of other codes like HACC (Habib et al. 2013) and 2HOT

(Warren 2013) to determine which differences arise from the force-solving technique and

which arise from the softening model.

Another approach to determining the correct solution in the non-linear regime is

through scale-free simulations. In the scale-free framework, a simulation is executed with

a power-law initial power spectrum and an Ωm = 1 background cosmology. The matter

clustering is expected to be self-similar—early-time, small-scale clustering should be a

rescaling of late-time, large-scale clustering. Deviation from this behavior is non-physical,

but it is also expected since N-body simulations include non-physical scales such as soft-
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ening. We explore this behavior in Appendix A.

In this work, we have also demonstrated Abacus’s performance, which exceeds 30

million particles per second per step until z = 1.1. Afterwards, the near-field computation

slows down due to the amount of clustering at this particle mass. Overall, we achieve a

mean rate of 23 Mp/s and measure GPU performance of over 50% of the peak theoretical

FLOPS. Future enhancements to Abacus will substantially increase our performance at

this force and mass resolution.
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Table 3.1—Continued

Action Time [s] % Rate Notes

Multipole Write 27.6 15 % 1.9 GB/s 108 GB written

convolution 68 27 % All work is CPU

Array Swizzle 19 28 %

Convolution Arithmetic 19 28 % 5.8×109 DP-FLOPS/core

z-FFT 10 15 %

Inverse z-FFT 10 15 %

Wait for IO 10 15 %
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Figure 3.8: Test of evolution the deeply linear regime (σ8 = 0.817/200 at z = 0). Abacus

executed 137 time steps from zinit = 49 to z = 0 and recovers the analytic linear theory

prediction with excellent accuracy. The dashed line shows the predicted scaling of the

suppression of growth rate due to discreteness, or finite particle mass, on the power

spectrum.
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Chapter 4

Improving Initial Conditions for

Cosmological N-Body Simulations

This thesis chapter was originally published as

Garrison, Lehman H., Daniel J. Eisenstein, Douglas Ferrer, Marc V. Metchnik,

Philip A. Pinto 2016, MNRAS, 461, 4125

Abstract

In cosmological N-body simulations, the representation of dark matter as discrete“macropar-

ticles” suppresses the growth of structure, such that simulations no longer reproduce lin-

ear theory on small scales near kNyquist. Marcos et al. demonstrate that this is due to

sparse sampling of modes near kNyquist and that the often-assumed continuum growing

modes are not proper growing modes of the particle system. We develop initial condi-

tions that respect the particle linear theory growing modes and then rescale the mode
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amplitudes to account for growth suppression. These ICs also allow us to take advan-

tage of our very accurate N-body code Abacus to implement 2LPT in configuration

space. The combination of 2LPT and rescaling improves the accuracy of the late-time

power spectra, halo mass functions, and halo clustering. In particular, we achieve 1%

accuracy in the power spectrum down to kNyquist, versus kNyquist/4 without rescaling or

kNyquist/13 without 2LPT, relative to an oversampled reference simulation. We anticipate

that our 2LPT will be useful for large simulations where FFTs are expensive and that

rescaling will be useful for suites of medium-resolution simulations used in cosmic emula-

tors and galaxy survey mock catalogs. Code to generate initial conditions is available at

https://github.com/lgarrison/zeldovich-PLT.

4.1 Introduction

Cosmological N-body simulations are the state-of-the-art tool for predicting dark matter

halo clustering and masses for a given cosmology. In most cosmological models, a large

fraction of mass is in the form of dark matter and thus behaves as a collisionless“fluid”well

described by the coupled Vlasov-Poisson equations. N-body simulations take a discrete

“macroparticle” sampling of this underlying fluid and then treat the evolution of the

particle system as tracing the evolution of the fluid system (for an alternative phase-space

formulation of this problem, see Hahn et al. 2013). The applicability of results derived

from N-body simulations thus assumes correspondence between the particle system and

the fluid system.

This assumption has a number of well-documented violations (collectively known

as “discreteness effects”) at very early and very late times, such as correlations induced
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by the initial particle sampling (see Joyce & Marcos 2007b), and two-body relaxation

(e.g., Binney & Knebe 2002; El-Zant 2006). A third, intermediate regime has received

less attention, however: the evolution of the N-body system from its initial configuration

up to the mildly non-linear regime. The work of Marcos et al. (2006) showed that in

this regime, the assumptions of fluid linear theory are strongly violated on small scales.

Based on their work, we seek to correct these small-scale effects by modifying our initial

conditions to respect the proper growing modes of the simulation and compensate for

missing growth. This directly addresses the improper growth of modes on small scales

that Warren (2013) identified as the dominant systematic error in precision halo mass

functions.

The underlying theory, developed by Marcos et al. (2006), is called particle linear

theory (PLT). PLT is an analytical description of the evolution of a grid-like particle

system that self-interacts under a 1/r2 force law. It is a perturbative solution to the fully

discrete cosmological N-body problem, derived from a linearization of the force from a

perfect cubic periodic lattice1 using the dynamical matrix formalism well known in solid

state physics (see §4.2). As long as its perturbative assumption is satisfied, PLT fully

describes the particle positions and velocities as a function of time (or redshift). This

allows analysis of discreteness effects by comparing the particle behavior for finite N to

the limit N→ ∞.

The authors of PLT have used their theory to quantify discreteness effects from the

linear and weakly non-linear regimes (Joyce & Marcos 2007a) to the fully non-linear regime

1It is not limited to this case; the framework is equally valid for any Bravais lattice, such as body-

centered and face-centered lattices. We will focus on the simple cubic case, however.
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(Joyce et al. 2009). However, PLT has not yet been used to improve the initial conditions

of simulations. In this work, we develop PLT-based corrections to the initial conditions

that eliminate transients due to the initial grid configuration of the particles. Additionally,

we develop a fast and powerful new approach to second-order Lagrangian perturbation

theory (2LPT) that does not rely on large Fourier transforms, and we demonstrate its

accuracy by performing the actual particle evolution from z = 4999 with our extremely

precise N-body code Abacus. We compare our answer to that of a well-known 2LPT

code and find excellent agreement on all but small scales, where we expect differences due

to the different assumptions inherent in our approaches.

Broadly speaking, simulations must produce power spectra and halo properties ac-

curate to 1% to support current and upcoming galaxy surveys (e.g. Tinker et al. 2008;

Weinberg et al. 2013). Specifically, projects like the DES (Frieman & Dark Energy Survey

Collaboration 2013), LSST (LSST Dark Energy Science Collaboration 2012), and Euclid

(Cimatti et al. 2009; Laureijs 2009) are projected to require 1% accuracy in the matter

power spectrum to k = 10h Mpc−1 (Schneider et al. 2016a). These stringent demands are

our motivation for careful examination and improvement of the initial conditions on small

scales.

In §4.2, we review the formalism of PLT. Then, in §4.3, we discuss our application of

PLT to the initial conditions of cosmological simulations and quantify the improvements.

In §4.4, we develop our new approach to 2LPT and test its accuracy. Finally, in §4.5, we

discuss the implications of our findings for cosmological measurables derived from N-body

simulations (halo masses, clustering, and power spectra), and summarize our results in

§4.6.
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4.2 Particle Linear Theory

Here, we review particle linear theory (PLT) as developed by Marcos et al. (2006) (see also

Joyce & Marcos 2007a; Joyce et al. 2005). PLT gives the analytical evolution of a slightly

perturbed lattice of self-gravitating particles, which is precisely the initial configuration

of many cosmological simulations. We will emphasize the ways in which this evolution

diverges from that of the corresponding fluid system.

4.2.1 PLT formalism

Consider a simple cubic lattice of N equal-mass particles in a box of side length L with

periodic boundary conditions. In an expanding universe, the equation of motion is

ẍi + 2H(t)ẋi =− 1
a3 ∑

i 6= j

Gm j(xi−x j)

|xi−x j|3
, (4.1)

where xi is the comoving position of particle i, mi is its mass, and G is the universal

gravitational constant. xi is related to the physical position by ri = a(t)xi, where a(t) is

the cosmological scale factor and H(t) = ȧ/a is the corresponding Hubble factor.

If we label the original lattice site corresponding to particle i with its comoving

position Ri, then we may write the displacement of particle i from Ri as u(Ri). Thus, the

full comoving position of a particle is given by xi(t) = Ri +u(Ri). Following the convention

in PLT, we generally drop the subscript i from Ri.

The right side of Eq. 4.1 can be expanded at linear order in the relative displacements
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of particle pairs2 to yield

ü(R, t)+ 2Hu(R, t) =− 1
a3 ∑

R′
D(R−R′)u(R′, t). (4.2)

The matrix D(R) is known in solid state physics as the dynamical matrix (Pines 1964).

For a given R, D(R)u(R) is the force induced at the origin by a particle at R displaced

by u(R). Specifically, the dynamical matrix can be written as

Dµν(R 6= 0) = Gm
(

δµν

R3 −3
RµRν

R5

)
(4.3)

Dµν(0) =− ∑
R6=0

Dµν(R), (4.4)

where δµν is the Kronecker delta. The second equation is a statement of Newton’s third

law. D cannot be computed as simply as these expressions suggest, however, because

there is an implicit sum over infinite periodic copies. Ultimately, this means one must

either compute D using an Ewald-type summation (as in Marcos et al. 2006) or with a

very precise N-body force solver, as we use (see §4.2.3).

In Eq. 4.2, D acts as a convolution kernel acting on the displacements, and thus it

is not surprising that it has a natural action in Fourier space. If we define the discrete

Fourier transform and its inverse3 as

ũ(k, t) = ∑
R

e−ik·Ru(R, t) (4.5)

u(R, t) =
1
N ∑

k
eik·Rũ(k, t), (4.6)

2When expanding the force in a Taylor series, one finds that each term in the sum over lattice sites R′

has its own convergence criterion: |R−R′|> |u(R)−u(R′)|. This lends some robustness to the expansion,

because even as particles move and some particle pairs start to violate this condition, many others may

continue to satisfy it and thus still produce a useful approximation of the total force.

3See Marcos et al. (2006) for subtleties regarding the summation limits.

110



CHAPTER 4. IMPROVING COSMOLOGICAL N-BODY ICS

then we may write the equation of motion (Eq. 4.2) as

¨̃u(k, t)+ 2H(t) ˙̃u(k, t) =− 1
a3 D̃(k)ũ(k, t). (4.7)

We define D̃ as the Fourier transform of D , in analogy with Eq. 4.6. From the symmetry

properties of D(R), D̃(k) must be a real, symmetric operator with three orthogonal

eigenvectors en(k) and eigenvalues ω2
n (k).

Because the eigenvectors of D form a complete basis at every k, we can project an

arbitrary displacement field onto the basis ên(k). Or, as we discuss in §4.3.1, we can

construct a displacement field that consists of one eigenmode at every k. For now, we

will discuss the evolution of an arbitrary displacement field from initial conditions u(R, t0)

and u̇(R, t0).

We can represent the Fourier space evolution of ũ(k, t) as a sum of the independent

evolution of each eigenmode4:

u(k, t) =
3

∑
n=1

Un(k, t) [ên(k) · ũ(k, t0)] ên(k)

+Vn(k, t)
[
ên(k) · ˙̃u(k, t0)

]
ên(k). (4.8)

The functions Un(k, t) and Vn(k, t) can be found by substituting the above equation into

Eq. 4.7, with the boundary conditions

Un(k, t0) = 1, U̇n(k, t0) = 0,

Vn(k, t0) = 0, V̇n(k, t0) = 1. (4.9)

Replacing D̃ ên by ω2
n ên, one finds

f̈ + 2H ḟ =−ω2
n (k)

a3 f , (4.10)

4Recall that modes at different wavevectors evolve independently in linear theory.
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to which Un(k, t) and Vn(k, t) are the solutions.

The exact form of Un and Vn depends on the cosmology. In ΛCDM, the early universe

is well described by an Einstein-deSitter (Ωm = 1) cosmology, with scale factor a(t) ∝ t2/3

and Hubble constant H(t) = 2/3t. Since the small-displacement (and thus early-time)

regime is exactly what we are considering here, EdS is a good approximation to ΛCDM.

Thus, we have

Un(k, t) =α̃(k)

[
α

+
n (k)

(
t
t0

)α−n (k)

+ α
−
n (k)

(
t
t0

)−α+
n (k)

]
(4.11a)

Vn(k, t) =α̃(k)t0

[(
t
t0

)α−n (k)

−
(

t
t0

)−α+
n (k)

]
(4.11b)

where

α̃(k) =
1

α
−
n (k)+ α

+
n (k)

(4.12)

and

α
−
n (k) =

1
6

[√
1 + 24εn(k)−1

]
(4.13a)

α
+
n (k) =

1
6

[√
1 + 24εn(k)+ 1

]
. (4.13b)

In these expressions, εn(k) are the normalized eigenvalues, given by

εn(k)≡− ω2
n (k)

4πGρ0
. (4.14)

This completes the PLT description of the evolution of an arbitrary displacement and

velocity field in an EdS universe, up to the numerical computation of the eigenmodes of

D (see §4.2.3).
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4.2.2 Discreteness effects and the fluid limit

We now have a quantitative framework in which to compare particle lattice evolution to

the evolution of the equivalent fluid system. Namely, we can compare the behavior of wave

modes on the lattice to wave modes in the fluid system. We discuss two ways in which

discreteness manifests: deviation of the eigenvalue spectrum from unity, and deviation of

the longitudinal eigenvectors from k̂.

In Fig. 4.1, all three eigenvalues are plotted for every k. If the lattice behaved as a

fluid, two of the eigenvalues would be 0 and one would be 1 at every k. The two null

eigenvalues correspond to transverse modes, or modes with zero divergence and non-zero

curl that do not source forces in fluid theory, so their deviation from 0 in Fig. 4.1 is purely

an artefact of discreteness. The eigenvalue of 1 corresponds to a longitudinal mode that

produces density perturbations that source a force directly proportional to the overdensity.

The presence of εn > 1 corresponds to an “overdriven” mode that collapses faster than the

fluid limit, while εn < 1 is an“underdriven”mode that collapses more slowly. A mode with

−1/24 < εn < 0 is purely decaying; εn < −1/24 is oscillatory. Note that the eigenvalues

converge to either 1 or 0 as |k| → 0, which is a reflection of the fact that we recover the

fluid behavior in the limit of a well-sampled mode.

The orientation of modes explains why some modes are overdriven and some are

underdriven for the same |k|. Modes aligned with the grid axes collapse faster than those

skew to them. This orientation dependence is a direct violation of isotropy.

Due to the fact that some modes are consistently underdriven and some overdriven,

we would expect accumulation of this effect over time. In Fig. 4.2, we plot the magnitude of

this effect, averaged over mode orientations. This plot illustrates one of the most surprising
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Figure 4.1: Eigenvalue spectrum for a 323 particle simple cubic lattice. Eigenvalues

of 1 and 0 correspond to fluid behavior for longitudinal and transverse modes, respec-

tively (Eq. 4.14). The corresponding growing mode exponent is labeled on the right axis

(Eqs. 4.13 & 4.18), where 2/3 is the nominal fluid linear theory value. Compare with

Joyce & Marcos (2007a) fig. 1.

114



CHAPTER 4. IMPROVING COSMOLOGICAL N-BODY ICS

and important results of Marcos et al. (2006), which is that the power spectrum at a fixed

redshift of a particle system diverges from the fluid limit as zinit→ ∞, because an earlier

starting time means more time for these non-fluid effects to build up5. This divergence

is particularly important to note because standard practice is to increase zinit and claim

that the results are representative of the desired fluid behavior. While this achieves the

goal of reducing higher-order effects, the fact that the first-order results diverge from the

fluid limit is often neglected. Increasing the redshift as a test of convergence is only a

safe procedure when considering scales much larger than the interparticle spacing. The

correct way, then, to test for convergence on intermediate and small scales is to increase

the particle density while keeping the initial redshift fixed and compare the results at the

same wavenumber. This is the procedure we employ throughout this work. Additionally,

we attempt to make a correction for this effect by modifying the initial conditions, which

we describe in §4.3.3.

The second manifestation of discreteness in PLT is in the eigenvectors of the dynam-

ical matrix. In fluid theory, only longitudinal (compressional) modes feel forces because

they are the only modes that produce density contrasts. This corresponds to the eigen-

modes

ê1 = k̂; ε1 = 1;

ê2 = k̂2⊥; ε2 = 0;

ê3 = k̂3⊥; ε3 = 0; (4.15)

where k̂2⊥ and k̂3⊥ are chosen such that {ên} forms an orthogonal basis. In PLT, all

5This prediction of suppression of small-scale power with increasing initial redshift has been borne out

in empirical tests, e.g. L’Huillier et al. (2014).
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Figure 4.2: Discreteness factor Ddens for a 643 particle simple cubic lattice, averaged in

bins of |k|. This gives the ratio of the density power spectrum in PLT to fluid theory as

a function of scale factor (for ainit = 1) and wavenumber. Compare with Joyce & Marcos

(2007a) fig. 3, but note the differences due to our definition of Ddens.
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three eigenvectors generically have non-zero eigenvalues and the longitudinal eigenvector

ê1 6= k̂. Since simulations are nearly always initialized with purely k̂ modes, this manifests

as forces misaligning with displacements. This introduces vorticity that should eventually

decay relative to the growing mode, but such effects do not disappear quickly, especially

in higher-order statistics (Scoccimarro 1998). See §4.3.1 for our correction of this effect.

The nearly-perfect alignment of forces and displacements that we achieve is also important

for our implementation of second-order Lagrangian perturbation theory corrections (see

§4.4).

4.2.3 Numerical computation of dynamical matrix

Eq. 4.8 gives the analytical particle evolution in PLT but depends on knowing the eigen-

vectors ên(k) and eigenvalues ω2
n (k) of D̃(k), which must be calculated numerically. Mar-

cos et al. (2006) compute the spectrum with a custom Ewald summation method, which

works by decomposing the gravitational potential into near-field and far-field components.

The former is summed in configuration space and the latter in Fourier space, since they

converge quickly in those respective spaces. The sums are truncated when the series is

determined to have converged. The potential yields D(R), which is then is Fourier trans-

formed to D̃(k). Recall that D̃(k) is a 3× 3 matrix at every k, so the determination of

the 3N eigenvectors and eigenvalues reduces to N 3×3 matrix diagonalizations, which can

be done with any numerical linear algebra package.

Rather than build a custom Ewald summer, we take advantage of the high force

accuracy of our N-body code Abacus (see §4.2.4) and calculate D in the following manner:

1. Generate a uniform grid of N particles;
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2. Displace one particle by a small fraction of the interparticle spacing (10−5 is suffi-

ciently small) along the x-axis;

3. Measure the force induced on all other particles by this displaced particle and call

this field F+x(R);

4. Displace the particle by the same amount in the −x direction;

5. Measure the force and call this field F−x(R);

6. Add the forces to cancel second-order effects: 1
2(F+x(R)−F−x(R))/10−5 is one row

of D(R);

7. Repeat steps (ii) – (vi) for the y- and z-axes.

Having formed D(R), we can now proceed exactly as before to calculate D̃(k) and its

eigenmodes. In practice, we do not displace the particle along the y- and z-axes. Instead,

we permute the indices of the x result to obtain the y and z results. Furthermore, the

eigenvalues and eigenvectors vary smoothly below kNyquist, so rather than generate new

eigenmodes for every different N, we generate one N = 1283 grid and trilinearly interpolate

to finer grids on-the-fly.

4.2.4 Abacus: N-body cosmology to machine precision

Throughout this work, we employ the N-body code Abacus, described in Chapter 2 of

this thesis. In this application, the most enabling aspect of Abacus is its ability to

compute near-machine-precision forces while maintaining competitive speeds.
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In Table 4.1, we define two sets of parameters that we will refer to as “normal pre-

cision” and “high precision” throughout the rest of this work. We use high precision for

evaluation of the dynamical matrix in §4.2.3 and most of the tests of the correctness of

our methods in §4.3 & §4.4 (that is, the 643 and 2563 particle simulations). We note

the exceptions as they occur, which are generally for simulations to low z. In high pre-

cision, the maximum force error reaches nearly machine precision, but is more expensive

to evaluate (and the lack of softening makes it unsuitable for low-z applications). In our

7203 and 14403 cosmology simulations in §4.5, we use normal precision. In computing the

dynamical matrix, the high precision multipole Order and Precision are both necessary

for an accurate determination of the eigenmodes.

The exceptional force accuracy of Abacus enables us to carry out the precise testing

of the initial conditions in the following sections.

4.3 Corrections to Initial Conditions

In this section and the next, we discuss four applications of the above theory to improve the

initial conditions of cosmological simulations: (i) initializing every mode in the simulation

to a single eigenmode at every k; (ii) correcting the velocities of every mode to eliminate

decaying-mode transients; (iii) rescaling the initial displacement amplitudes such that

the power spectrum will match the linear prediction at a later time; and (iv) calculating

second-order Lagrangian perturbation theory corrections using a novel in-place scheme.

The last correction we defer to the next section, as its derivation is independent of PLT.
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Table 4.1:: Abacus code options

Parameter Normal precision High precision

SofteningLength 1/8 particle spacing 0

Softening technique Plummer None

NearFieldRadius 2 3

Multipole Order 8 16

Precision 32-bit 64-bit

Max force error 1×10−4 2×10−8

Median force error 2×10−6 4×10−11

Notes – The force error is the maximum fractional error on a set of 216 uniformly

random distributed particles, compared to the true 1/r2 forces computed with an Ewald

summation in 256-bit precision. The other parameters are described in §4.2.4.
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4.3.1 Spatial transients

As we know from our consideration of the eigenmodes of D̃ , every k has a three orthogonal

eigenvectors ên: one “longitudinal” and two “transverse” eigenvectors. The longitudinal

eigenvector is most closely parallel to k̂ (thus we label it ê‖), and it converges to k̂ as

|k| → 0. Below the Nyquist frequency, the longitudinal eigenmode also always has the

largest eigenvalue, meaning it is the strongest growing mode on the grid. This has the

following implication. Consider a mode ũ(k) oriented along k̂. Generically, this mode

will have non-zero components along all three PLT eigenvectors. No matter the relative

magnitudes of these components, the one with the largest eigenvalue will dominate after

some time, because of the power-law behavior of Eq. 4.11. Until then, the excitation of

the transverse eigenmodes can be seen as a transient that is purely dependent on the time

since initialization. This is a discreteness effect that we can eliminate by initializing each

mode in the longitudinal eigenmode ê‖ instead of k̂. We will call this mode ũ‖(k), since

ũ‖(k) ∝ ê‖.

What amplitude do we choose for ũ‖(k)? There are two reasonable choices:

|ũ‖(k)|= |ũ(k)| or |ũ‖(k)|= |ũ(k)|
ê‖ · k̂

. (4.16)

The former is simply a rotation of the old mode into the new direction, while the latter

preserves the projection of the new mode onto k̂. We choose the latter gauge because it

preserves the density power spectrum. In other words, the divergence remains unchanged,

but we add a small curl component.

As always, we only excite modes below the Nyquist wavenumber, defined as kNyquist =

π/∆x, where ∆x is the particle spacing. This is the maximum wavenumber at which one

can inject power without aliasing to lower wavenumbers. This corresponds to modes that
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are sampled by at least two particles per cycle.

4.3.2 Temporal transients

The above prescription guarantees that the displacements start in the longitudinal eigen-

mode of the grid; now we must turn to the growing mode. This corresponds to choosing

the initial velocities such that the decaying terms in Eqs. 4.11 cancel each other when

substituted into Eq. 4.8. For an initial displacement field ũ‖(k, t0), the velocity field that

cancels the decaying terms is

ṽ‖(k, t0) =
α−(k)ũ‖(k, t0)

t0
, (4.17)

which, in combination with our choice above to use only ê‖, causes Eq. 4.8 to simplify to

u(k, t) =

(
t
t0

)α
−
‖ (k)

u(k, t0). (4.18)

In other words, the displacements evolve in the pure growing mode.

Note that this velocity choice is a significant departure from the Zel’dovich approxi-

mation (Zel’dovich 1970) in which the velocities are always parallel to the displacements.

In our prescription, the parallel property still holds true in Fourier space, but the k de-

pendence of α− means it will not hold in configuration space.

We have now shown how to establish displacement and velocity fields u‖(t0) and v‖(t0)

for an arbitrary input power spectrum that will eliminate transients to linear order. Two

issues remain: the systematic under-/over-growth of modes on the grid, and non-linear

transients. We first turn to the former.
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4.3.3 Growth rates and rescaling

As we discussed in §4.2.2, every eigenvalue in Fig. 4.1 not equal to 1 will grow faster or

slower than fluid theory predicts. The effects can be significant: the average undergrowth

of a mode at kNyquist/2 is about 15% after a factor of 10 increase in scale factor (see

Fig. 4.2). To achieve 1% accuracy in the power spectrum, we would have to limit ourselves

to wavenumbers below ∼ kNyquist/10 (if the problem were purely linear). Systematic small-

scale undergrowth could also impact non-linear clustering, which we investigate in §4.5.

Furthermore, the growth rates are dependent on the orientation relative to the grid, which

could imprint preferred axes on the clustering.

Can we correct for this effect? Fluid linear theory gives us the expected displacement

power spectrum as a function of time, and Eq. 4.8 gives the actual power spectrum that

will be produced in a simulation. Thus, we can try rescaling the initial power by the

ratio6

Ddens(k, t)≡ PPLT(k, t)
Pfluid(k, t)

=
|ũPLT(k, t) · k̂|2

|ũfluid(k, t) · k̂|2

=

∣∣∣∣( t
t0

)α
−
‖ (k) ũfluid(k,t0)ê

ê·k · k̂
∣∣∣∣2

|ũfluid(k, t) · k̂|2

=

(
a(t)3α

−
‖ (k)/2

a(t)

)2

, (4.19)

where in the second line we have used Eqs. 4.16 & 4.18. This requires selecting a “target

redshift” ztarget at which time the simulation power spectrum and fluid power spectrum

will match in linear theory. This redshift should be early enough that the displacements

are still perturbative and PLT is still valid, but close enough to the onset of non-linear

6In practice, we are rescaling displacement amplitudes, not power, so we rescale by
√

Ddens(k, t).
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evolution that the non-linearities will be seeded with the correct power spectrum. In our

tests in §4.5, we try ztarget = 12 and 5. One still expects these “growth rate” effects to be

present during non-linear evolution, but PLT loses descriptive power in that regime, so

we can no longer apply rescaling.

One major concern (and indeed the concern that Joyce & Marcos (2007a) raise)

with this “rescaling” is the accumulation of non-linearities while evolving from zinit to

ztarget due to the larger self-interaction of the displacements, since the displacement field

is offset from the “true” fluid value during this time. In the strongly linear regime, this

is a demonstrably negligible effect. To quantify this, we ran Abacus in a high-precision

mode (see Table 4.1) from zinit = 4999 to zfinal = 24, a factor of 200 in scale factor, for 643

particles in a 50h−1Mpc box. Furthermore, we decreased σ8 (the normalization of the

power spectrum) by a factor of 1000 to decrease the displacement amplitudes, such that

PLT should fully describe the evolution of the system. We tested two initial conditions:

one with rescaling and one without (both started from the Zel’dovich approximation in

the PLT growing mode) and compare both to the linear theory prediction at z = 24. The

results are shown in Fig. 4.3, which demonstrates the remarkable success of rescaling.

In configuration space, the particle displacements and velocities match linear theory to

0.006% on average7, versus 6% without rescaling. In Fourier space, rescaling fully restores

a 60% power deficit at kNyquist. Besides being a strong confirmation of the correctness of

PLT and rescaling within their regime of applicability, this is a remarkable testament to

Abacus’s ability to evolve a system with displacements of order 10−6 of the interparticle

7Our definition of particle-averaged fractional error is the average absolute error over the mean mag-

nitude, or 〈|a−b|〉/〈|a + b|/2〉 We adopt this definition to avoid large numerical scatter due to the tiny

magnitudes of some of the displacements.
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spacing.

Of greater interest is rescaling in the weakly non-linear regime, where we intend to

apply it in practice (for example, starting a simulation at zinit = 49 with ztarget = 5). We

anticipate that non-linearities may arise from two sources: fluid non-linearities that are

present in the true physical problem and non-physical non-linearities due to the offset

evolution of the rescaled field before ztarget. Thus, we must test whether the latter are

sufficiently small. To that end, we run a simulation identical to the above, but with zinit =

49 and ztarget = 5 and 2LPT initial conditions (see §4.4), and compare it to a simulation

oversampled by a factor of 4. Specifically, we increase the particle count to 2563 and

truncate the power spectrum at kNyquist/4. By only adding power below this wavenumber,

we are oversampling the existing modes in the 643 box which thus reduces the requisite

amount of rescaling on those modes. Thus, we expect non-linearities in the 2563 simulation

to represent fluid non-linearities, not rescaling non-linearities.8

The results of this test are shown in Fig. 4.4, where we have also shown the results

of ztarget = 12. Rescaling to ztarget = 5 completely restores the lost power at all scales (up

to 40% at kNyquist). If there were substantial non-fluid non-linear effects, we would have

expected excess power at kNyquist due to the earlier onset of non-linear growth, which is not

present. This is not a purely linear regime, either: the non-linear contribution to the power

is about 10% at z = 5 (dashed line). The scatter of P(k) about the reference (reaching

8To make our comparisons meaningful, we compare the density fields as computed by the divergence

of the displacements fields. In other words, we discard any curl components in the displacement fields.

This is because the PLT growing mode introduces a small curl component, which is smaller for the 2563

modes than the 643 modes, but it is ultimately a fixed property of the grid and does not change the

density power spectrum.
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Figure 4.3: A test of rescaling in the strongly linear regime (evolving a simulation from

z = 4999 to z = 24 and using σ8 = 0.8/1000 at z = 0). Top: The density power spectrum

for the reference (input) power spectrum at z = 24 (black dotted line), and the simulation

power spectra at z = 24 with and without rescaling (dashed lines). The green dashed line

is not the reference theory line – it is a simulation output – but it matches the reference

to a factor of 10−5 in the displacements. This demonstrates that rescaling is capable

of completely restoring the predicted fluid power spectrum in the strongly linear regime.

Middle: The ratio of the simulation power spectra with the reference. Bottom: The cross-

correlation of the phases of the density fields with the reference (see Fig. 4.5 caption for

details).
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15% at kNyquist) may be evidence for these effects, but this is relatively unconcerning given

that the uncorrected power spectrum has a 40% power deficit at the same scale. Thus,

we consider ztarget = 5 a safe choice for use in cosmological simulations. Rescaling does not

substantially change the cross correlation, which is already very good on all scales. This

is consistent with our expectation from PLT that only the mode amplitudes are wrong

relative to fluid linear theory; the phases remain unaffected.

We use 2LPT in this test because it is important for removing non-linear transients

(as we show in the next section), but we choose a relatively high starting redshift of 49 to

decrease its relative amplitude, since we want our results to be a measurement of rescaling,

not 2LPT.

It should be emphasized that rescaling is only possible because of the eigenmode and

growing mode corrections that we have already made. Otherwise, we would not know the

growth rate for any mode and could not compensate for it, as each would be a mixture of

three growth exponents (some negative!). In other words, the position corrections start

the displacements in the longitudinal grid eigenmodes, the velocity corrections select the

growing solution, and rescaling “divides out” the under-/overgrowth.

4.4 Second-order Lagrangian Perturbation Theory in

Configuration Space

We present next a new technique for computing non-linear displacement and velocity

corrections with second-order Lagrangian perturbation theory (2LPT). We emphasize that

this scheme is derived from continuous theory – not PLT – so does not explicitly account
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2LPT-PLT & rescaling to ztarget = 5

Linear theory at z= 5

4x oversample 2LPT-PLT & rescaling to ztarget = 5 (reference)

Figure 4.4: A test of rescaling of the initial conditions as we intend to use it in practice

(see §4.3.3). The cosmology is ΛCDM with kNyquist = 4h Mpc−1 and a spline softening

radius of 1/20 of the particle spacing. The reference is a 2563 particle oversampled simu-

lation (black dotted line), and the three test cases are 643 simulations with no rescaling,

rescaling to ztarget = 12, and rescaling to ztarget = 5, respectively. All are initialized at z = 49

with 2LPT in the PLT growing mode. The dashed line is the linear theory prediction for

z = 5, so the difference with the reference line quantifies the amplitude of non-linearities.

Top: the ratio of each power spectrum with the reference. Rescaling completely restores

the power spectrum across the whole range of k. Middle: The root-mean-square devi-

ation of P(k) = δ̃ (k)δ̃ ∗(k) in bins of k. See Fig. 4.5 caption for details. Bottom: The

cross-correlation of the phases of each density field with the reference simulation.
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for grid effects. However, the configuration-space approach we employ naturally preserves

the displacements in the PLT longitudinal eigenmodes. We numerically demonstrate the

accuracy of our approach by comparing it with the actual evolution from very high redshift

– an approach only possible with PLT corrections. We first present a derivation of our

technique from continuous theory, then detail its implementation in Abacus and tests of

its accuracy.

4.4.1 Theory

As before, we take x = R + u to be the comoving position, where R is the initial grid and

u is the comoving Lagrangian displacement. Taking v and g to be the comoving velocity

and gravitational force, respectively, the equations of motion in an expanding universe are

dx
dt

= v (4.20)

dv
dt

+ 2Hv = g (4.21)

∇x ·g =−4πGρcomovinga−3
δ (4.22)

In linear theory, g = (3/2)ΩmH2u. Substituting this and Eq. 4.21 into Eq. 4.22 yields the

equation of motion

d2u
dt2 + 2H

du
dt

=
3ΩmH2

2
u. (4.23)

For Ωm = 1, we have a ∝ t2/3 and H = 2/3t, which gives the usual growing-mode solution

u ∝ t2/3 ∝ a.

Beyond linear theory, the relation u ∝ g will break down. Thus, we can consider

perturbative corrections to this field by writing

u(t) = εd1(t)u1 + ε
2d2(t)u2 + ε

3d3(t)u3 + O(ε
4) (4.24)
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where ε is a bookkeeping notation that represents the order of the term in this perturbative

expansion. The functions dn(t) and fields un are arbitrary at this point, but we will find

them shortly by considering the dynamics.

If we take just the first term of the expansion (u(t) = εd1(t)u1) but also consider the

interaction of the field with itself, then we must have a force series of the form

g =
3ΩmH2

2
[εd1(t)u1 + ε

2d2
1(t)S(u1)+ O(ε

3)], (4.25)

where S is some field that is second-order in u1.

Taking the next term in the expansion, we have u(t) = εd1(t)u1 +ε2d2(t)u2. We must

now consider the self-interaction of the first-order part, the cross-interaction of the first-

and second-order parts, and the self-interaction of the second-order part. This yields

g =
3ΩmH2

2
[εd1(t)u1 + ε

2d2(t)u2 + ε
2d2

1(t)S(u1)+ O(ε
3)], (4.26)

where we have dropped any terms smaller than ε2.

Substituting this into the equation of motion, we have

(
d2

dt2 + 2H
d
dt

)
(εd1(t)u1 + ε

2d2(t)u2)

=
3ΩmH2

2
(εd1(t)u1 + ε

2d2(t)u2 + ε
2d2

1(t)S(u1)). (4.27)

Separating by order, we recover the linear growth equation(
d2

dt2 + 2H
d
dt
− 3ΩmH2

2

)
d1(t)u1 = 0, (4.28)

which has the growing-mode solution d1(t) ∝ t2/3. The next order is(
d2

dt2 + 2H
d
dt
− 3ΩmH2

2

)
d2(t)u2 =

3ΩmH2

2
d2

1(t)S(u1). (4.29)
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Thus, we find that S(u1) = u2. That is, as the linear displacement field grows, the first non-

linear correction to the displacements is given by the part of the force due to interaction

of the linear part with itself, up to an overall scaling. The time dependence is simply

given by solving the above ODE for d2(t), which yields d2(t) = (3/7)d2
1(t).

How do we find S(u1)? If we write the force from d1(t)u1 as g[d1(t)u1], then Eq. 4.25

tells us

d2(t)u2 =
3
7

d2
1(t)S(u1)

=
3
7

2
3ΩmH2

1
2

(g[d1(t)u1]+ g[−d1(t)u1]). (4.30)

Specifically, this is possible because S(u1) has even parity with respect to u1. Further-

more, note that the O(ε3) terms have canceled due to their odd parity. In summary,

two force calculations with opposing first-order displacements isolates the second-order

displacements to third-order accuracy.

We can calculate the velocities at each order simply from v = u̇. For u = ∑d j(t)u j,

d(d j)

dt
= d j

1
d j

d(d j)

da
da
dt

= d jH f j, (4.31)

where f j is the familiar d lnd j/d lna, which is just a property of the cosmology; for example,

with Ωm = 1, we have d1 ∝ a and d2 ∝ a2, so f1 = 1 and f2 = 2. This yields velocities

v = ∑H(t) f j(t)d j(t)u j.

Having described our theory, we can now identify how it will interact with PLT

and thus the particle grid. Since our first-order displacements will be in the longitudinal

eigenmode, they can only produce second-order forces also in the longitudinal eigenmode,

in analogy with fluid k̂ modes being unable to produce forces with a curl. Thus, the

particle displacements after 2LPT will still be in the longitudinal eigenmode. However,
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our fluid theory assumes that the second-order force is proportional to a2 and that its

direction is constant, both of which are not true in PLT. As a displacement grows in

PLT, the wavevector-dependent linear growth factors will cause it to change direction

in configuration space, causing the force direction to change as well. Thus, we attach

the wrong displacement amplitudes and velocities. Of course, we would have to Fourier

transform the displacements to correct these effects, which would negate much of the

advantage of our configuration space approach. On large scales, we expect our corrections

to be accurate, as the grid converges to fluid behavior. This is the behavior we find in

§4.4.3.

4.4.2 Implementation

We implement our 2LPT as follows in Abacus. Normally, every timestep contains a

velocity update (“Kick”) and position update (“Drift”) for every particle; in the following,

we express our 2LPT approach as a set of Kick and Drift operators.

1. Generate a field of first-order displacements d1(t)u using any standard technique

[like the Zel’dovich approximation (ZA)], preferrably with PLT corrections. Apply

the displacements to the particles.

2. Compute the force g[d1(t)u]. Store in the velocity. This is like a Kick.

3. Reverse the displacement of every particle; that is, give every particle the position

x = R− d1(t)u. This requires retrieving the initial grid location R, which we store

in each particle’s ID number. This is like a Drift.

4. Compute the force g[−d1(t)u]. Add to the velocity. This is like a Kick.
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5. Take the position (currently holding the displacement −d1(t)u) and the velocity

(currently holding 7H2Ωmd2(t)u2) and manipulate to form the second-order position

R + d1(t)u1 + d2(t)u2 and the second-order velocity Hd1(t)u1 + 2Hd2(t)u2. Store in

the position and velocity. This is like a Drift.

The result is second-order Lagrangian perturbation theory for the cost of two force eval-

uations and memory requirements equal to the normal simulation code.

4.4.3 Accuracy

The purpose of 2LPT is to correct for evolution that is missed by starting at a low

redshift instead of a very high redshift. Thus, to test the accuracy of our 2LPT theory

and implementation, we run a simulation in a high-precision mode of Abacus (see Table

4.1) with 5123 particles in a 50h−1Mpc box from zinit = 4999 to zfinal = 24. We set up the

initial conditions using the ZA in the PLT growing mode, using rescaling as described

above9 with ztarget = 24. We truncate the power spectrum at kNyquist/8 to reduce the

amplitude of the rescaling and grid effects in general to avoid non-linearities beyond those

that we are seeking to measure here. Thus, our three test cases are produced on 643

particle grids, so they sample the same modes as the 5123 reference. Fig. 4.5 shows the

results of comparing the following fields:

(i) the Zel’dovich Approximation (labeled “No 2LPT”);

(ii) 2LPTic (Crocce et al. 2006), a standard Fourier-space 2LPT code (“2LPTic”);

9As a reminder, this means that, on a mode-by-mode basis, we increase/decrease the initial amplitudes

to counteract the predicted linear under-/overgrowth at the target redshift.
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(iii) our configuration-space 2LPT (“Abacus 2LPT”); and

(iv) the reference simulation evolved from z = 4999, as described above (“Full evolution”).

Both Abacus 2LPT and 2LPTic do a very good job of reproducing the full evolution

– much better than ZA in all metrics. Indeed, on large scales (larger than ∼ kNyquist/3),

Abacus 2LPT and 2LPTic are nearly indistinguishable, and only show systematic dif-

ferences of < 0.5% from the reference solution.

On smaller scales, the most discriminatory metrics are the root-mean-square scatter

of P(k) (Fig. 4.5, top right) and the transverse power P⊥ê(k) (bottom left). The former

is useful since k-averaged power P(k) can hide anisotropic (e.g. lattice) effects, while the

latter is useful since P(k) is blind to the presence of curl modes. At kNyquist, Abacus

2LPT has 4% scatter about the reference, while 2LPTic has 1.5%, since 2LPTic does

not suffer from the same anisotropic particle discreteness effects as Abacus (see §4.4.1

for a discussion). At kNyquist/2, these effects reduce to 1% and 0.5%, respectively.

In transverse power P⊥ê(k), 2LPTic reaches 8% of its power in transverse modes

at kNyquist, versus 0% for Abacus 2LPT. Specifically, this transverse power is measured

relative to the PLT eigenmodes, which are the proper eigenmodes that will not excite

lattice transients. Assuming these transverse modes do not source forces, their power will

decay as 1/a. However, this is not a good assumption – the non-zero eigenvalues on the

lower branches in Fig. 4.1 are direct evidence of that – which means that most of these

modes will grow or oscillate indefinitely. This means that 92% of the continuum power

at kNyquist is in the correct eigenmode, where it grows at a moderately suppressed rate,

and 8% is in a transverse eigenmode, where it grows at a drastically suppressed rate.

Furthermore, in all eigenmodes, the velocities (which are derived from continuum theory)
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will mix growing and decaying solutions. Abacus’s use of PLT eigenmodes eliminates all

mixing of eigenmodes and decaying solutions.

2LPTic operates in Fourier space, while Abacus operates in configuration space,

so comparing the two is useful and important test. Our detailed approach to generating

comparable fields between Abacus and 2LPTic is the following:

1. Generate a ZA field and its corresponding 2LPT field in 2LPTic;

2. Project a copy of the ZA field onto the PLT grid modes;

3. Generate a 2LPT prediction with Abacus from the projected ZA field;

4. Compare to the 2LPTic 2LPT field.

We run 2LPTic with Nmesh = 512 and Nsample = 64 to generate both the 5123 and 643

lattices.

Finally, we compare the 2LPT results from Abacus’s high-precision configuration

to those from Abacus’s normal-precision configuration, since that is how it will be used

in practice. The results match to remarkable precision: the particle-averaged fractional

error is 7× 10−6, or close to floating-point precision, which is the floor, since Abacus’s

normal-accuracy calculations are in single precision.

4.4.4 Implementation caveats

For several reasons, this “displacement flipping” technique would not be well-suited to a

normal N-body code with standard Zel’dovich approximation ICs. First, the accuracy of

the 2LPT correction is a direct function of the force accuracy of the code being used. The
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Figure 4.5: A comparison of our configuration-space 2LPT (“Abacus 2LPT”) with a

standard Fourier-space 2LPT code (“2LPTic”) at z = 24 on a 643 particle grid. The

reference solution is taken to be the full evolution from z = 4999 of an oversampled,

rescaled simulation in the PLT growing mode with 5123 particles as described in §4.4.3.

Abacus 2LPT has larger RMS deviations in P(k) versus 2LPTic (top right; 4% vs 1.5%

at kNyquist), but no power P⊥(k) in transient curl modes (0% versus 8% at kNyquist; bottom

left). The mean power P(k) and phase cross-correlation are excellent at all k for both

Abacus 2LPT and 2LPTic. Top left : The ratio of the power spectrum P(k) of each

of the density fields with the reference. We compute P(k) from the density modes δ̃ (k)

as P(k) =
〈

δ̃ (k)δ̃ ∗(k)
〉

, where ∗ denotes complex conjugation and 〈·〉 denotes averaging

in annular bins of k. We compute δ̃ (k) from the displacements ũ(k) in Fourier space as

δ̃ (k) = k · ũ. Top right : The root-mean-square deviation of P(k) = δ̃ (k)δ̃ ∗(k) in bins of

k. Bottom left : Transverse (curl-mode) power, measured relative to the longitudinal PLT

eigenvector ê‖(k). The transverse power is computed as P⊥ê(k) =
〈

δ̃⊥(k)δ̃ ∗⊥(k)
〉

, where

δ̃⊥(k) = |kê× ũ|. Bottom right : Cross-correlation of the phases of the density fields,

defined as Re
(

δ̃ ∗ref(k)δ̃ (k)
)
/
∣∣∣δ̃ref(k)

∣∣∣ ∣∣∣δ̃ (k)
∣∣∣.136
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highly symmetric configuration of the particles makes this a particularly difficult task,

because the near- and far-field components of the force both have large amplitudes (but

opposite signs). If the code does not respect the symmetry of the system, it is unlikely to

produce accurate 2LPT corrections. Abacus has exceptional force accuracy, even in this

difficult configuration: in Abacus’s high-precision mode (see Table 4.1), a homogeneous

lattice has a maximum absolute force error of 1× 10−10 (mean 5× 10−12), compared to

the mean amplitude of 2× 10−3 for typical second-order forces at z = 49. In Abacus’s

normal-precision configuration, the maximum noise is 2× 10−5 (mean 1× 10−6). Thus,

we might place an extremely conservative estimate of 1% 2LPT errors due to noise in

the lattice; in practice, however, as we showed above, the normal precision 2LPT result

matches the high-precision result to an average fractional error of 7× 10−6. Thus, we

conclude that with Abacus, even our normal precision results are more than adequate

to produce 2LPT corrections.10

The second implementation challenge for most ICs is that the displacements should

be in the longitudinal eigenmodes of the grid (see §4.3.1). Otherwise, the 2LPT corrections

themselves will contain transverse modes. Since 2LPT corrects for missing evolution from

high z, one should not expect a system in a transient configuration that cannot be reached

from high z to be improved (at least on small scales) by this approach to 2LPT. The code

developed by the authors to generate initial conditions from the Zel’dovich Approximation

in the PLT growing mode is publicly available11.

10Note that we quote force errors here on a homogeneous lattice, as opposed to the random particle

configuration quoted in Table 4.1.

11https://github.com/lgarrison/zeldovich-PLT
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Finally, we note that our recommended implementation overwrites the particle ve-

locities. In theory, this is not a problem, because we can recompute the ZA velocity

directly from the ZA displacement, as we prescribe in the last step of our implementa-

tion. However, in PLT, the velocity for the pure growing solution is not related to the

displacement so simply (see §4.3.2). Thus, in practice, we must either save or re-read the

original first-order velocities to restore them after our 2LPT computations.

4.5 Cosmological Results

We now test the impact of our modifications to the initial conditions (PLT, rescaling, and

2LPT) on common observables extracted from simulations. Specifically, we examine the

density power spectrum, halo mass function, and halo two-point correlation function.

4.5.1 Simulation details

The base cosmology for our simulations is the Planck 2015 cosmology (Planck Collabora-

tion 2016). All of our simulations are initialized at z = 49 and run to z = 1, with outputs

at z = 5, 3, and 1. Our nominal simulation size is 7203 particles in a 562.5h−1Mpc box,

except for our “oversampled” simulation with 14403 particles in the same volume. The

nominal particle mass is 4×1010 h−1M�, and we use a Plummer softening length of 1/8

of the interparticle spacing, or 78 h−1 kpc. Our internal code parameters are those in the

“normal precision” column of Table 4.1, with CPD = 225 (375) for 7203 (14403) particles.

Each simulation was repeated 4 times with different realizations (“phases”) of the

input power spectrum. The results that follow are the average of the four, with error bars
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representing the full range of variation across the phases (i.e. not the standard deviation).

The 14403 simulation serves as our point of reference in the results below. We truncate

the input power spectrum at kNyquist/2, so we are oversampling the existing modes in the

7203 boxes by a factor of two. Thus, we consider it a more accurate representation of

the “fluid truth” value, although it does not represent an absolutely converged reference

point. We hold the softening fixed; i.e., the softening is 1/4 of the interparticle spacing in

the 14403 simulation.

4.5.2 Power spectrum

We measure the density power spectrum at z = 1 both in projection and as a full 3D

set of modes. In both cases, the density field is calculated with triangle-shaped cloud

(TSC) mass assignment and deconvolved with the aliased-TSC window function from

Jeong (2010, Chapter 7).

3D power spectrum

We compute the 3D density power spectrum with a fast Fourier transform (FFT) on a

7203 mesh (Fig. 4.6). The combination of 2LPT and rescaling (2LPT-PLTR) (with either

ztarget = 5 or 12) reproduces the power spectrum of the oversampled simulation to within

1% for nearly the whole range of modes down to kNyquist. With just 2LPT, the accuracy

falls below 1% at kNyquist/4. In other words, to achieve 1% accuracy at kNyquist, a simulation

with only 2LPT would have to have 64 times the mass resolution as a simulation that

also uses rescaling.
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All of the results in Fig. 4.6 agree with our expectations. The Zel’dovich Approxi-

mation (ZA) misses substantial power (between 1% and 6%) at all but the largest scales,

and adding our PLT eigenmode corrections (ZA-PLT) slightly worsens the z = 1 power.

This is because the ZA-PLT initial velocities are smaller to match correctly the generically

suppressed growth rate. Adding second-order Lagrangian Perturbation Theory (2LPT-

PLT) is extremely helpful in recovering power on all scales, but 1 to 3% errors persist

above kNyquist/4, corresponding roughly to 64 particle haloes. Combining rescaling and ZA

(ZA-PLTR) helps recover power on small scales, but not as well as 2LPT, and does very

little on large scales. The combination of rescaling and 2LPT (2LPT-PLTR) produces

the best match to the oversampled simulation, with sub-1% errors nearly down to kNyquist,

largely independent of our choice of ztarget.

Since a consideration of this work is the anisotropy of the simulation imposed by the

axes of the particle lattice, we also produce a 3D power spectrum by rotating the simula-

tion domain such that the particle lattice is skew to the FFT mesh and then measuring

the 3D power spectrum. We also shrink the domain of the FFT by a factor of
√

3 to avoid

gaps at the edges due to the rotation. The resulting power spectrum shows no substantial

differences from Fig. 4.6; thus, we do not show it here.

Projected power spectrum

Weak lensing measures the projection of the matter power spectrum on the sky, so fore-

casts of weak lensing from simulations must use the 2D (projected) power spectrum, which

we compute with a (8×720)2 FFT (Fig. 4.7). Before projection, we rotate the simulation

domain so the particle lattice is skew to the FFT mesh (as described above). However,
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this makes almost no difference in the resulting power spectrum. Note that we have plot-

ted power above kNyquist, where the particle lattice contributes significant power. This

should serve as a cautionary example against considering evolved power in simulations

above kNyquist; however, we do expect that the non-linearities of structure formation will

somewhat lessen the amplitude of these effects at lower z.

4.5.3 Halo mass function

We measure halo properties with three halo finders: rockstar (Behroozi et al. 2013),

rockstar spherical overdensity (SO), and friends-of-friends (FoF). On large scales, the

three are in very good agreement concerning the behavior of the nominal-resolution sim-

ulations compared to the oversampled reference simulation, but below ∼ 500 particles we

find qualitative differences. Understanding the behavior of different halo finders in this

regime is relevant to interpreting our results – especially the impact of rescaling, which is

fundamentally a small-scale correction.

The improper growth of modes near kNyquist has been identified as the dominant

source of systematic errors in high-precision halo mass functions (Warren 2013). Previous

attempts to correct the anisotropic aspect of this improper growth have resulted in dra-

matic suppression of small haloes (Reed et al. 2013) and, to our knowledge, no attempts

have been made to compensate for the improper growth rates before this work.

We search for haloes at z = 1, 3, and 5, and restrict our analysis to haloes larger than

30 particles and halo mass bins with approximately 100 haloes or more.
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Figure 4.6: Density power spectra at z = 1 for different initial conditions. Each line is

the average of 4 different simulations corresponding to different realizations of the input

power spectrum. The red shaded region encloses total variability between the realizations

for our preferred ICs (red solid line), but the variability is smaller than the line width.

The grey shaded band indicates our target of 1% accuracy in the power spectrum. See

§4.5.2.
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Figure 4.7: Projected power spectra at z = 1 for different initial conditions. The simu-

lation domain is rotated to an angle skew to the FFT grid before projection. Each line

is the average of 4 different simulations, each corresponding to a different realization of

the input power spectrum. The red shaded region encloses total variability between the

realizations for our preferred ICs (red solid line). The grey shaded band indicates our

target of 1% accuracy in the power spectrum. See §4.5.2.
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rockstar

rockstar is a hierarchical halo finder that recursively applies the friends-of-friends al-

gorithm (see below) in six-dimensional phase space to identify dark matter structure and

substructure. rockstar can also track haloes across time, but we restrict our analysis to

strictly static simulation snapshots. We also only examine parent haloes (whose masses

include all substructure). A parent halo is a halo whose center does not lie within the the

radius of a larger halo. We use the default “virial density” threshold to define haloes.

The rockstar halo mass functions are shown in Fig. 4.8 and summarized in Table

4.2. The same trends that were visible in the z = 1 power spectrum (§4.5.2) are present in

the halo mass function. These effects are perhaps most clearly elucidated at z = 3, where

we find a 20 to 25% deficit of haloes across the whole mass range of 30 – 500 particles

when using the Zel’dovich Approximation (ZA), compared to the oversampled reference

simulation (corresponding to the mass range of 240 – 4000 particles). Adding rescaling to

the initial conditions restores half of the missing small haloes, but does very little for the

large haloes, as we would expect. 2LPT is the most important factor for recovering large

haloes, and also has an appreciable impact on small haloes. The combination of 2LPT

and rescaling successfully recovers the halo mass function of the oversampled simulation

to within 5% across the whole mass range at this redshift.

At z = 1, our preferred combination of 2LPT and rescaling successfully restores the 5

to 10% deficit of haloes seen with ZA across the whole mass range of 30 – 5000 particles.

However, below about 500 particles, we also overproduce haloes by 1 to 6%. To test

the origin of this surplus, we downsample the 14403 reference simulation by a factor of

8 and then run rockstar on the resulting 7203 particles. Specifically, we downsample
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by a factor of 2 on every dimension of the original particle lattice, such that we select

the particles whose initial lattice sites matches those in the 7203 simulations. The result

of this procedure is labeled “Downsampled” in Fig. 4.8, where we see that downsampling

tends to overproduce small haloes by 3 to 10%. Thus, it appears that the over-production

of small haloes in our preferred ICs (rescaling and 2LPT) may be an artefact of halo

finding in a coarsely sampled simulation, rather than a physical feature of the simulation

itself.

Because our downsampling procedure is likely to produce non-physical variations in

the binding energy of haloes, we disable halo unbinding in all of our rockstar analyses.

This corresponds to setting UNBOUND_THRESHOLD to 0 and disabling BOUND_PROPS.

rockstar SO

rockstar also has the option to output spherical overdensity masses. The correspon-

dence between rockstar haloes and SO haloes is one-to-one – SO simply uses the halo

centers that rockstar has already identified. The SO mass is computed by expanding a

spherical search volume from the halo center until the average density within the sphere

falls below the threshold density. SO masses are interesting for our analysis, because,

naively, we would expect this technique to be relatively less sensitive to the difference

in the spatial sampling between the nominal-resolution and oversampled simulations. In

particular, FoF-based techniques tend to link together haloes along filamentary structures,

which SO will not do (Knebe et al. 2013).

The rockstar SO mass functions are shown in Fig. 4.9 and summarized in Table

4.3. The same trends are visible in SO masses that were visible in rockstar masses.
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However, while we do not overproduce small haloes at z = 1, we do slightly underproduce

large haloes at z = 1. This is evidence of a systematic mass shift across the whole mass

range. Specifically, on a halo-by-halo basis, switching from rockstar to rockstar SO

inflates the masses of the haloes in the oversampled simulation more than the haloes in

the nominal-resolution simulations.

Friends-of-friends

The friends-of-friends (FoF) algorithm links particles together if they are within a “linking

length” b. A set of linked particles is identified as a halo. The linking length is commonly

expressed as a fraction the interparticle spacing ∆x = N1/3. We use b = 0.2 in this analysis.

The FoF mass functions are shown in Fig. 4.10 and summarized in Table 4.4. FoF

is very sensitive to the spatial stochasticity of the particle sampling, due to the Poisson

nature of particle linking and the above-mentioned filamentary linking problem. Thus, we

consider the downsampled simulation (where we take 1/8 of the oversampled particles)

as our reference case. Without this, we would conclude that our simulations overproduce

haloes below 1000 particles by 5 to 15% at z = 1. We consider the above rockstar results

as further evidence that the downsampled simulation is indeed the appropriate reference

case.

Our preferred ICs using rescaling and 2LPT match the downsampled mass function

to within 1% across nearly the whole mass range of 30 – 2000 particles at z = 1, with

similar success at the other redshifts. At high masses, the small number of haloes causes

fluctuations at the 5% level, but there is no evidence for additional systemic shifts.

The particularly simple nature of FoF makes it unsurprising that we recover very
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similar results to the power spectrum analysis, namely, that our preferred ICs are an

excellent match to the oversampled simulation, and that 2LPT alone is insufficient below

500 particles, with 5% too few haloes of 100 particles.

4.5.4 Halo clustering

We compute the two-point correlation function (2PCF) of haloes as

ξ (s) =
DD
RR
−1, (4.32)

which is equivalent to the Landy-Szalay estimator (Landy & Szalay 1993) because the

domain is a cubic, periodic box. We restrict our analysis to haloes separated by 3 – 30

h−1Mpc at z = 1, where we have a sufficient number of halo pairs and are not approaching

the box periodicity scale. We compute the DD term using TreeCorr (Jarvis 2015) and

the RR term analytically. We repeat this analysis for the haloes found by each halo finder.

We compute the correlation function in four mass bins. The first two are simple halo

mass cuts: 100 – 300 particles, and 300 – 1000 particles. The next two are halo-mass rank

cuts: all haloes ranked between 105 and 3×104, and all haloes ranked above 3×104. These

ranks are chosen such that the average mass limits across phases and ICs approximately

correspond to the absolute mass cuts of the first two bins. This halo-mass ranking proce-

dure is akin to “abundance matching”, wherein dark matter haloes are matched to their

observational counterparts by matching the mass rank of each, rather than attempting to

make absolute mass calibrations (e.g. Guo et al. 2010). This is particularly important for

volume-limited galaxy surveys, which have no direct knowledge of the masses of haloes

but do know the number densities of the most massive haloes. The following results sug-

gest that clustering derived from abundance matching has a relatively smaller systematic
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Figure 4.8: Top left : rockstar halo mass functions at the three output redshifts in

the reference (oversampled) simulation. Each line corresponds to one of the three other

panels. Halo particle counts have been divided by 8, to show them on the same mass scale

as our other simulations. Top right, bottom left, bottom right : The halo mass functions at

the three output redshifts divided by the reference mass function at that redshift. These

results are summarized in Table 4.2.
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Figure 4.9: Same as Fig. 4.8, but for rockstar spherical overdensity halo masses.

These results are summarized in Table 4.3.
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Figure 4.10: Same as Fig. 4.8, but for friends-of-friends halo masses. Note that the

reference line is the “downsampled” result, because the “oversampled” result is a very

poor match to the nominal-resolution results. The downsampled result is produced by

taking a subsample of one out of eight particles and running that subsample through

FoF. This matches the spatial stochasticity of the nominal-resolution simulations and

produces results that agree with the rockstar and power spectra results. These results

are summarized in Table 4.4.
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Table 4.2:: Mean errors in the rockstar halo mass functions (Fig. 4.8)

Simulation z = 1 z = 3 z = 5

2LPT-PLTR ztarget = 5, Oversampled (Ref.) 0.0%±0.0% 0.0±0.0% 0.0±0.0%

2LPT-PLTR ztarget = 5, Downsampled 3.4±4.3 5.9±6.0 7.6±7.6

ZA −4.2±4.7 −21.6±21.9 −50.6±50.6

ZA-PLT −4.8±5.1 −22.9±23.1 −53.3±53.3

2LPT-PLT −0.6±2.1 −5.7±7.4 −18.3±19.2

ZA-PLTR ztarget = 5 −1.7±3.9 −16.1±16.9 −39.9±40.1

2LPT-PLTR ztarget = 5 2.4±3.0 2.2±2.6 1.3±2.1

2LPT-PLTR ztarget = 12 1.3±1.6 −0.7±2.7 −7.3±8.0

Notes – Summary of the offset and scatter of the halo mass functions for different ICs

relative to the reference ICs. The mean deviation for a given simulation is the average

fractional difference of that simulation’s halo mass function from the reference. The

quoted uncertainty is the root-mean-square of this fractional difference.
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Table 4.3:: Mean errors in the rockstar SO halo mass functions (Fig. 4.9)

Simulation z = 1 z = 3 z = 5

2LPT-PLTR ztarget = 5, Oversampled (Ref.) 0.0%±0.0% 0.0%±0.0% 0.0%±0.0%

2LPT-PLTR ztarget = 5, Downsampled −0.4±1.9 3.8±4.1 5.7±5.8

ZA −8.0±8.3 −23.3±23.7 −51.7±51.7

ZA-PLT −8.6±8.9 −24.7±24.9 −54.3±54.4

2LPT-PLT −4.3±5.0 −7.8±8.9 −20.0±20.7

ZA-PLTR ztarget = 5 −5.5±6.5 −18.0±18.9 −41.1±41.2

2LPT-PLTR ztarget = 5 −1.4±1.7 −0.0±1.2 −0.8±1.5

2LPT-PLTR ztarget = 12 −2.5±2.6 −3.0±3.8 −9.4±9.7

Notes – See Table 4.2 Notes.

Table 4.4:: Mean errors in the friends-of-friends halo mass functions (Fig. 4.10)

Simulation z = 1 z = 3 z = 5

2LPT-PLTR ztarget = 5, Downsampled (Ref.) 0.0%±0.0% 0.0%±0.0% 0.0%±0.0%

2LPT-PLTR ztarget = 5, Oversampled −6.5±7.6 −8.9±9.6 −5.8±7.2

ZA −5.6±6.1 −21.3±21.5 −46.9±47.0

ZA-PLT −6.1±6.5 −22.4±22.6 −49.0±49.0

2LPT-PLT −2.5±3.9 −6.3±7.3 −17.0±17.3

ZA-PLTR ztarget = 5 −2.7±4.1 −14.8±15.9 −36.4±36.8

2LPT-PLTR ztarget = 5 1.4±2.4 2.5±2.9 2.9±3.0

2LPT-PLTR ztarget = 12 −0.2±1.7 −0.8±2.5 −4.7±4.9

Notes – See Table 4.2 Notes.
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error due to details of the initial conditions than clustering from a mass-selected set of

haloes.

rockstar

The 2PCF of rockstar haloes is shown in Fig. 4.11. The absolute-mass bins show

large sensitivity (∼ 5%) to the ICs, because the masses of haloes at a constant bias are

systematically shifting up or down. Thus, the mass bins are gaining or losing some bias

relative to the reference simulation, shifting the 2PCF.

Switching to mass-ranked bins reduces the scatter among the ICs by a factor of 2 or

more. Regardless of absolute-mass or mass-ranked binning, either 2LPT or 2LPT with

rescaling is the best match to the reference. With mass ranking, we can recover the 2PCF

to within a fraction of a percent, especially after averaging over phases. Adding volume

to our boxes would produce the same effect, which is one reason why multi-Gpc boxes

will be required to calibrate upcoming galaxy surveys.

The most important factor for recovering the 2PCF is 2LPT, followed by rescaling.

Without 2LPT, systematic shifts of 1 to 3% are seen in all absolute-mass bins, or 1% in

the mass-ranked analyses.

rockstar SO

The 2PCF of rockstar SO haloes is shown in Fig. 4.12. We see the same reduction in

scatter moving from absolute-mass to mass-ranked bins, but we see a large (3%) offset

from the reference solution that was not present before. Since the halo centers are identical

to the rockstar halo centers, the SO haloes must be reordering the masses of haloes,
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such that the 3×104 most massive haloes (for example) are a relatively less-biased sample

than the reference. We note that the downsampled simulation is an excellent match to

the nominal-resolution simulations, as it is in the mass functions, suggesting that mass-

reordering due to the sensitivity of rockstar to the mass resolution of the simulations

is the main culprit.

Friends-of-friends

The 2PCF of FoF haloes is shown in Fig. 4.13. The FoF results are quite similar to the

rockstar results (with 2LPT and rescaling offering the best match to the reference,

followed by 2LPT alone), with the exception that our preferred solution works equally

well in the absolute-mass and mass-ranked bins. This is due to the excellent match in the

mass function between the reference and the 2LPT results, so very little halo reordering

must occur when switching to the mass-ranked functions. Our preferred solution recovers

the 2PCF to within a fraction of a percent in most cases. The other ICs are shifted by 2

to 4% in the absolute-mass bins, or 1 to 2% in the mass-ranked.

4.5.5 Glass initial conditions

All of the simulations in this work have used particle-lattice pre-initial conditions, because

less structured configurations (such as a“glass”) are harder to treat in the PLT framework.

Analytically, the eigenmodes are no longer plane waves, and computationally, the N 3×3

eigenvalue problems become a 3N×3N problem. Our approach here is to generate glass

initial conditions and empirically demonstrate that they do not alleviate the systematic

suppression of small-scale power that is predicted by PLT. This reproduces the result of
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Figure 4.11: The two-point correlation function of rockstar haloes at z = 1. Each of

the bottom four panels shows a different mass bin. The middle row shows mass-selected

haloes, while the bottom row shows mass-rank-selected. The approximate mass ranges

are the average across all of the simulations.
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Figure 4.12: Same as Fig. 4.11, except with rockstar spherical overdensity halo masses.
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Figure 4.13: Same as Fig. 4.11, except with friends-of-friends halo masses.
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Joyce et al. (2009).

A glass is a force-free configuration of particles that is reached by evolving a random

distribution of particles in an expanding background with the sign of gravitational accel-

eration reversed. All the particles repel each other and oscillate about their equilibrium

positions until they have been sufficiently damped by the background expansion. Like a

lattice, a glass is uniform on large scales, but unlike a lattice, it is also isotropic on scales

appreciably larger than the particle spacing.

We expect that glass pre-initial conditions will eliminate large-scale anisotropy pro-

duced by the particle lattice, but not the systematic small-scale suppression of power.

This effect depends only on the fact that the continuum density field has been discretized,

not the nature of that discretization. This is what Joyce & Marcos (2007a) call dynamical

sparse sampling effects.

To test this, we use Abacus to generate 723 and 803 particle glasses, which are tiled

using 2LPTic (Crocce et al. 2006) to produce 3603 and 7203 2LPT initial conditions,

respectively. We use 2LPTic’s cloud-in-cell deconvolution to reduce the suppression

power from interpolating to the glass. The number of Abacus cells-per-glass-tile is kept

constant between the glass generation and actual simulations, as are the precision and

softening. This ensures no discontinuities in the residual forces as we transition from

glass-making to simulation. The mean residual forces after glass generation are a factor

of 500 below the mean forces on the particles at zinit = 49.

Fig. 4.14 shows that switching from lattice to glass pre-ICs does not restore power.

The 3603 glass configuration at z = 1 shows just as much loss of power relative to the 7203

glass as the 3603 lattice does from the 7203 lattice.
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The 7203 glass shows a small loss of power (0.5% at kNyquist) relative to the 7203

lattice, which we attribute to loss of power during interpolation of the displacements from

the FFT mesh to the particles (despite our use of CIC deconvolution12). If the effect were

due to residual forces in the glass tiles, we would have expected accelerated growth of

structure and a surplus of power, not a deficit. Indeed, increasing the size of the FFT

mesh in 2LPTic has no effect on our results other than to decrease this loss of power,

hence our use of a relatively fine 14403 mesh.

4.6 Conclusions

We have built upon the particle linear theory of Marcos et al. (2006) and shown how

to eliminate transients at linear order in initial conditions for cosmological simulations.

We consider the case of a simple cubic lattice of particles as the pre-initial configuration

instead of a glass, because these dynamical discreteness effects are present in both cases

but only analytically tractable in the particle lattice case. We then consider how such

a system evolves in time and reproduce the PLT result that modes near kNyquist will be

systematically suppressed as a simulation evolves. PLT gives the exact amplitude of this

k-dependent suppression, so we rescale the initial mode amplitudes such that they will

arrive at the correct amplitudes at a later time, with the motivation of seeding non-linear

evolution with the correct linear power spectrum. In a ΛCDM simulation with zinit = 49

and kNyquist = 4h Mpc−1, we show that the this suppression results in a 15% power deficit

near kNyquist/2 at z = 5, and that rescaling completely restores this power (Fig. 4.4).

12See Jenkins (2010) for a superior method of interpolating to a glass.
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Figure 4.14: Power spectra at z = 1 for different pre-initial conditions. The grey shaded

band indicates our target of 1% accuracy in the power spectrum. The 3603 glass shows as

much loss of power relative to the 7203 glass as the 3603 lattice does to the 7203 lattice. In

other words, glass initial conditions do not alleviate the small-scale suppression of power

predicted by PLT. This suppression is due to the fact that the continuum density field is

discretized, not the arrangement (glass or lattice) of the discretization. See §4.5.5.
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We have also presented a new way to calculate second-order corrections in Lagrangian

perturbation theory from direct force calculations, without the need for large Fourier

transforms. We compare our 2LPT to the actual evolution of the particle system from

z = 4999 and find excellent agreement on large scales, with differences of 1% at kNyquist/2

due to particle lattice anisotropy. We also find excellent agreement with 2LPTic, a

standard FFT-based code, below kNyquist/3. Above that scale, both approaches have

drawbacks: 2LPTic starts to introduce transverse-mode power (as any non-PLT code

would), reaching 8% of power in transverse (i.e. transient) modes at kNyquist; similarly, our

2LPT suffers a scatter of 4% due to anisotropic lattice effects at the same scale.

Finally, we have tested the impact of PLT, rescaling, and our 2LPT implementation

on the matter power spectrum, halo masses, and halo two-point clustering at z = 1 in a

series of 7203 particle simulations initialized at z = 49 with particle mass 4×1010 h−1M�.

We compare the results to an oversampled reference simulation at 8 times the mass resolu-

tion. While our reference configuration does not represent an absolutely converged state,

increasing particle density for a fixed set of modes will necessarily converge towards the

continuum limit.

The power spectrum results confirm that the combination of 2LPT and rescaling is

necessary to achieve 1% accuracy down to kNyquist. 2LPT gives 1 to 3% errors below

kNyquist/4, corresponding roughly to 64 particle haloes. In other words, a simulation with

2LPT alone would need 64 times the mass resolution to achieve 1% accuracy at kNyquist.

We identify haloes using three halo finders and found that, with a few exceptions, our

results are largely independent of the finder. Specifically, at z = 1 we recover the known

result (e.g. Crocce et al. 2006; L’Huillier et al. 2014) that 2LPT is important for the most
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massive haloes (5 to 10% of haloes above 1000 particles are missing without 2LPT) and

show that rescaling is necessary to correct a 5 to 10% deficit of haloes below 500 particles.

These deficits increase at higher redshift, since the non-linearities of structure formation

have not yet had time to transfer power from low k to high k. At all redshifts and mass

ranges, 2LPT with rescaling was the best match to the reference simulation.

We analyse the halo 2PCF both in bins of absolute mass and mass rank. The absolute

mass bins show the strongest dependence on the choice of ICs (at the level of 5%), because

haloes are changing mass at constant bias, causing them to shift in or out of the mass bin.

Binning by mass rank greatly reduces this effect and lowers the dependence on the ICs to

the level of 1 to 3%. In nearly all cases, the combination of 2LPT and rescaling produces

the best match to the reference 2PCF, reaching agreement of a fraction of a percent in

many cases.

Our PLT growing mode corrections are manifestly the correct way to initialize cos-

mological N-body simulations to linear order. These corrections, in combination with

rescaling and our 2LPT implementation, are crucial for recovering accurate small-scale

power spectra, halo masses, and clustering. We anticipate that our 2LPT implementa-

tion will be particularly useful for extremely large N-body simulations, where large FFTs

are expensive. Rescaling may be most useful for arrays of medium-resolution simulations

in which substantially increasing the particle density is too expensive computationally,

e.g. when constructing covariance matrices or building cosmic emulators (e.g. Lawrence

et al. 2010).

Code to generate ZA initial conditions with PLT eigenmode corrections and rescaling

is available at https://github.com/lgarrison/zeldovich-PLT.
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Chapter 5

Abacus Cosmos: A Suite of

Cosmological N-body Simulations

This thesis chapter was originally published as

Garrison, Lehman H., Daniel J. Eisenstein, Douglas Ferrer, Jeremy L. Tinker,

Philip A. Pinto, David H. Weinberg, ApJS, 236, 43

Abstract

We present a public data release of halo catalogs from a suite of 125 cosmological N-

body simulations from the Abacus project. The simulations span 40 wCDM cosmologies

centered on the Planck 2015 cosmology at two mass resolutions, 4× 1010h−1 M� and

1× 1010h−1 M�, in 1.1h−1 Gpc and 720h−1 Mpc boxes, respectively. The boxes are

phase-matched to suppress sample variance and isolate cosmology dependence. Additional

volume is available via 16 boxes of fixed cosmology and varied phase; a few boxes of
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single-parameter excursions from Planck 2015 are also provided. Catalogs spanning z =

1.5 to 0.1 are available for friends-of-friends and rockstar halo finders and include

particle subsamples. All data products are available at https://lgarrison.github.io/

AbacusCosmos.

5.1 Introduction

High-precision forward modeling of large-scale structure is a necessary complement to up-

coming galaxy surveys, including DESI (Levi et al. 2013), WFIRST (Spergel et al. 2015),

Euclid (Laureijs et al. 2011), and LSST (LSST Science Collaboration et al. 2009), that will

catalog tens of millions of galaxies in unprecedentedly large volumes. Mock catalogs must

be available that allow design of survey strategies and testing of cosmological parameter

estimation and covariance. Although many fast approximate methods exist for gener-

ating such catalogs (e.g. COLA (Tassev et al. 2013) and QPM (White et al. 2014); see

Monaco (2016) for a recent review), the highest quality mocks remain those derived from

N-body simulations. These gravity-only simulations directly evolve collisionless Monte

Carlo tracers of the matter density field from the early, linear regime to late, non-linear

times when galaxies form. These simulations are fraught with challenges, from bias intro-

duced by discretization at early times (e.g. Joyce & Marcos 2007a; Garrison et al. 2016),

to artificial relaxation at late times (e.g. Diemand et al. 2004; Power et al. 2016), to lack

of hydrodynamical and baryonic physics (Mead et al. 2015; Schneider & Teyssier 2015;

Schaller 2015, and references therein), to disagreements among N-body solvers (Schneider

et al. 2016a) and among halo finders (Behroozi et al. 2015; Knebe et al. 2013), to the sheer

computational challenge of evolving O(1012) self-interacting particles, the scale that will
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be needed within a few years (Schneider et al. 2016a; Potter et al. 2016). Nevertheless,

N-body remains an invaluable tool in testing models of large-scale structure.

Given the computational expense of N-body, most public data products lie at one of

two extremes: full halo catalogs available at a fixed cosmology, or reduced data products

that allow variations in the cosmology. Some examples of the former are simulations

like Bolshoi and MultiDark (Riebe et al. 2013), Las Damas (McBride et al. 2009), and

Millennium (Lemson & Virgo Consortium 2006), which provide halo catalogs but focus on

a single fiducial cosmology. Examples of the latter are tools like CosmicEmu (Lawrence

et al. 2017) or fitting formulae like those found in Tinker et al. (2008) or Comparat et al.

(2017) for common data products like the power spectrum or halo mass function. These

tools take cosmological parameters as inputs but do not provide access to the underlying

halo catalogs or particles, so the science applications are limited. We aim to bridge

these two extremes by providing a suite of many different cosmologies with access to the

underlying halos and subsamples of the particles. In this sense, our approach is most

similar to skiesanduniverses.org (Klypin et al. 2017) because the focus is access to

raw halos and particles.

In the next section, we introduce the code used to run the simulations, and in §5.3

we discuss various parameter choices for the simulations and initial conditions. In §5.4,

we introduce the design of the Latin hypercube grid of 40 cosmologies that form the core

of our simulation effort, and in §5.5 we provide an overview of all the available sets of

simulations. In §5.6, we detail the data products that we generate for each simulation,

and in §5.7 we validate their accuracy. We summarize in §5.8.
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5.2 Abacus: fast and precise N-body cosmology

5.2.1 Overview

The simulations in this work all employ the N-body code Abacus, described in Chapter

2 of this thesis. In this section, we will focus on the application of Abacus to the El

Gato system. Each simulation here was run on a single node; indeed the parallel version

of Abacus was not implemented at the time of this work.

5.2.2 Hardware and performance

Most of the simulations in this work were run on the El Gato cluster at the University

of Arizona. The GPU nodes are dual-socket machines with two 8-core Intel Ivy Bridge

E5-2650v2 processors (2.6 GHz) and 256 GB DDR3 RAM (1800 MHz). Abacus is not

designed to hold all particles in memory but rather stream them from disk, so the I/O

demands are fairly high. In many cases, we use hardware RAID, but for these simulations

our strategy was to choose a problem size that would fit on a ramdisk (a filesystem

hosted in RAM). A local scratch disk or network filesystem would typically not have the

bandwidth to handle Abacus’s I/O demands. Thus, the choice of 14403 particles was set

by the size of the system ramdisk.

Our typical speeds at the outset of this project were about 4s−1Mpart (million par-

ticle updates per second) per timestep with about 20% of this time in the convolution

step between each primary timestep; later code improvements increased this to about

12s−1Mpart. This higher speed is still a factor of two lower than typical speeds on our

production machines (which were not used in this work), in part due to the extra load on
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the memory bandwidth from the ramdisk. The simulations took roughly 1000 timesteps

to reach the final redshift from zinit = 49. The large number of timesteps is due to the lack

of adaptive timestepping, so the global timestep is set by the shortest dynamical time in

the whole box. This will be addressed with on-the-fly group finding and multi-stepping

within those groups in future versions of Abacus.

5.2.3 Force softening

Several force softening options are available in Abacus. The simplest is Plummer soft-

ening, where the F(r) = r/r3 force law is modified as

F(r) =
r

(r2 + ε2
p)3/2 , (5.1)

where εp is the softening length. This softening is very fast to compute but is not compact,

meaning it never explicitly switches to the exact r−2 form at any radius (in contrast

with spline softening). This modifies the growth of structure on large scales (Joyce &

Marcos 2007a). This is the softening we employ for the emulator_1100box_planck and

emulator_720box_planck sets of simulations (see §5.5).

An alternative is spline softening, in which the force law is softened for small radii

but explicitly changes to the unsoftened form at large radii. Traditional spline implemen-

tations split the force law into three or more piecewise segments (e.g. the cubic spline of

Hernquist & Katz (1989)); we split only once for computational efficiency1 and call this

single_spline. We derive this form by considering a Taylor expansion in r of Plummer

1Multiple splits can cause code path branching, which incurs a significant performance penalty on

CPUs and an even larger one on GPUs.
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softening (Eq. 5.1) and requiring a smooth transition at the softening scale up to the

second derivative2. This gives

F(r) =


(
10−15(r/εs)+ 6(r/εs)

2)r/ε3
s , r < εs;

r/r3, r >= εs.

(5.2)

This is the softening we employ for the AbacusCosmos_1100box and AbacusCosmos_720box

simulation sets.

The softening scales εs and εp imply different minimum dynamical times (an impor-

tant property, as this sets the requisite temporal resolution to resolve orbits). We always

set the softening length as if it were a Plummer softening and then internally convert to

a softening length that gives the same minimum dynamical time for the chosen softening

method. For single_spline, the conversion is εs = 2.16εp.

5.3 Simulation Details

We present technical details of the simulation configuration here. For an overview of the

available sets of simulations, see §5.5.

2A Taylor expansion in r2 is also possible, but we discard that solution due to a large plateau of

constant angular frequency near r ∼ 0 that could excite dynamical instabilities.
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5.3.1 Initial conditions

The initial conditions were generated by the public zeldovich-PLT3 code of Garrison

et al. (2016). We do not provide initial conditions files with the catalogs, but we do

provide the input parameter file (info/abacus.par) for the IC code and the input power

spectrum from CAMB (Lewis et al. 2000). The initial conditions can thus be generated

by re-running the IC code with those inputs.

The simulations use second-order Lagrangian perturbation theory (2LPT) initial con-

ditions, but zeldovich-PLT only outputs first order displacements. The 2LPT corrections

are generated by Abacus on-the-fly using the configuration-space method of Garrison

et al. (2016).

Two non-standard first-order corrections are implemented by zeldovich-PLT. The

first is that the displacements use the particle lattice eigenmodes rather than the curl-free

continuum eigenmodes. This eliminates transients that arise due to the discretization

of the continuum dynamical system (the Vlasov-Boltzmann distribution function) into

particles on small scales near kNyquist. The second correction is “rescaling”, in which initial

mode amplitudes are adjusted to counteract the violation of linear theory that inevitably

happens on small scales in particle systems. This violation usually takes the form of

growth suppression; thus the initial adjustments are mostly amplitude increases. We

choose ztarget = 5 as the redshift at which the rescaled solution will match linear theory;

this choice is tested in Garrison et al. (2016).

Later, we will refer to simulations that are “phase-matched” in the initial conditions.

3https://github.com/lgarrison/zeldovich-PLT
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This refers to initial conditions with the same random number generator seed, called

ZD_Seed in the abacus.par file. Matching this value (and ZD_NumBlock) between two

simulations guarantees that the amplitudes and phases of the initial modes are identical

between the simulations (up to differences in the input power spectrum and cosmology).

5.3.2 Input power spectrum

We use CAMB (Lewis et al. 2000) to generate a linear z = 0 power spectrum for each

cosmology in our grid. We then scale the power spectrum back to zinit = 49 by scaling σ8 by

the ratio of the growth factors D(z = 49)/D(z = 0). This σ8 is passed to zeldovich-PLT,

which handles the re-normalization of the power spectrum. The computation of the growth

factors is done by Abacus’s cosmology module, so it is consistent by construction with

the simulation’s cosmological evolution. We only use massless neutrinos and include no

cosmological neutrino density. The exact CAMB inputs and outputs are available with

each simulation.

In the computation of the power spectrum, baryons and CDM are treated as separate

species; however, Abacus is a gravity-only N-body solver (i.e. no hydrodynamics or

baryonic physics), so we simply combine the baryonic and CDM density when computing

the overall mass density of the universe. It is this combined mass density that sets our

particle mass.
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5.3.3 Code parameters

The important Abacus parameters (including those that might affect code accuracy)

are given in Table 5.1 and described here. The simulations were run with a mix of

force softening laws. The “ZD” parameter prefix indicates that this is an input to our

zeldovich-PLT IC code.

LagrangianPTOrder The order of Lagrangian perturbation theory corrections to compute

at runtime (see §5.3.1).

Order The multipole order used for computing the far-field force.

SofteningLength The comoving Plummer-equivalent force softening length (see §5.2.3).

TimeSliceRedshifts The output redshifts. The last slice (z = 0.1) is only available for

the higher resolution “720box” simulations.

TimeStepAccel Parameter to limit the time step based on particle accelerations. The

time step is set such that amax∆t/vrms is never larger than this parameter. This

often sets the choice of time step at late times. Various choices of this parameter

are tested in Ferrer, et al. (in prep.); 0.15 is considered a conservative choice.

TimeStepDlna Maximum ∆(lna) allowed for a time step. This often sets the choice of

time step at early times. For example, 0.03 means at least 33 steps per e-folding of

the scale factor.

ZD_PLT_target_z The target redshift for PLT rescaling of the initial conditions (see §5.3.1

for a description of PLT corrections).
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Parameter Value

LagrangianPTOrder 2

Order 8

SofteningLength 63h−1 or 41h−1 kpc

TimeSliceRedshifts 1.5, 1.0, 0.7, 0.5, 0.3, [0.1]

TimeStepAccel 0.15

TimeStepDlna 0.03

ZD_PLT_target_z 5

ZD_qPLT 1

ZD_qPLT_rescale 1

Max (median) force error 1×10−4 (2×10−6)

Table 5.1:: Abacus code parameters, described in §5.3.3. The force error is the maximum

fractional error on the unsoftened forces on a set of 66K randomly distributed particles

compared to the true 1/r2 forces computed with an Ewald summation in 256-bit precision.

The last TimeSliceRedshift is only present for the higher-resolution simulations.
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ZD_qPLT Initialize the displacements and velocities in the eigenmodes of the particle sys-

tem.

ZD_qPLT_rescale Do PLT rescaling.

5.4 Cosmology Grid Design

The 40 cosmologies listed in Table 5.2 are distributed in a 6-dimensional wCDM parameter

space according to a Latin hypercube algorithm (see Fig. 5.1 for a visual representation).

Specifically, the algorithm samples a (H0,ΩMh2,Ωbh2,σ8,ns,w0) space centered on the

Planck 2013 cosmology (Planck Collaboration et al. 2014). We use Neff = 3.046 in all

cases. These 40 cosmologies are realized in the two AbacusCosmos simulation sets.

The goal of the cosmological parameter selection is to evenly span the parameter space

with only a limited number of cosmologies. The procedure used here follows the Latin

hypercube method described in Heitmann et al. (2009). In the Latin hypercube method,

each of the N dimensions is divided into M bins, with M being the number of desired

cosmologies. Each bin in each dimension is only sampled once, thus guaranteeing that

the entire range of parameter space is covered in the set of cosmologies. The hypercube is

optimized such that, for each cosmology, the distance to the nearest neighboring cosmology

is maximized.

The optimized hypercube is then rotated into the parameter space defined by the

union of WMAP 9-year (Hinshaw et al. 2013) and Planck 2013 (Planck Collaboration

et al. 2014) CMB results, combined with recent BAO and SN results. The results used

to define this space are obtained from Anderson et al. (2014). The axes of the Latin
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hypercube then correspond to the eigenvectors of the CMB-defined parameter space. In

the original hypercube design, each axis ranges from 0 to 1. In the CMB parameter space,

these ranges correspond to −4 to 4 times the eigenvalue along each eigenvector, so we are

sampling from the 4-sigma CMB constraints.

Although the Planck 2013 results were used in the hypercube design instead of the

2015 results, the resulting cosmologies span a larger space than allowed by either data set.

Thus, derivatives measured from these simulations should be equally useful when assuming

a fiducial cosmology of either Planck 2013 or 2015. Indeed, our fiducial cosmology for the

emulator_planck simulations is Planck 2015, and it falls nearly at the center of the

cosmology hypercube (the blue square in Fig. 5.1).

5.5 Catalogs

We present four collections of simulations organized into “sets”. Sets have names like

AbacusCosmos_1100box, while individual simulations have a two-digit number appended

to them like AbacusCosmos_1100box_00. The two-digit number refers to the cosmology.

Different phases of the same cosmology are indicated by a dash and number after the

cosmology, as in emulator_1100box_planck_00-1.

The four sets of simulations are as follows:

AbacusCosmos_1100box 41 phase-matched4 boxes: 40 spanning the 6-dimensional wCDM

cosmology parameter space (§5.4) and one with the fiducial Planck cosmology. Each

4“Phase-matched” means the initial conditions random number generator was given the same seed.

This ensures differences between boxes are due to cosmology and not cosmic variance; see §5.3.1.

175



CHAPTER 5. ABACUS COSMOS

H0 ΩDE ΩM ns σ8 w0

00 69 0.698 0.302 0.93 0.854 -1.14

01 63 0.669 0.331 0.982 0.719 -0.765

02 72.3 0.739 0.261 0.97 0.851 -1.08

03 66.2 0.671 0.329 0.975 0.858 -0.982

04 74.2 0.733 0.267 0.954 0.889 -1.22

05 71.5 0.706 0.294 0.954 0.913 -1.29

06 68.6 0.717 0.283 0.96 0.768 -0.969

07 66.7 0.709 0.291 0.987 0.734 -0.788

08 65.8 0.695 0.305 0.957 0.692 -0.796

09 72.7 0.719 0.281 0.931 0.89 -1.24

10 67 0.677 0.323 0.961 0.83 -0.995

11 72.2 0.732 0.268 0.963 0.851 -1.16

12 65.2 0.687 0.313 0.99 0.778 -0.827

13 64.1 0.67 0.33 0.976 0.776 -0.792

14 74.8 0.731 0.269 0.971 0.999 -1.37

15 67.4 0.708 0.292 0.976 0.732 -0.89

16 70.9 0.727 0.273 0.969 0.835 -0.999

17 62.1 0.658 0.342 0.95 0.714 -0.745

18 67.9 0.693 0.307 0.97 0.831 -0.934

19 71 0.717 0.283 0.955 0.849 -1.04

20 64.5 0.675 0.325 0.967 0.74 -0.742

21 68.3 0.689 0.311 0.975 0.847 -1.02

22 73.3 0.723 0.277 0.937 0.923 -1.3

23 62.7 0.645 0.355 0.965 0.77 -0.796

24 73.9 0.731 0.269 0.966 0.938 -1.24

25 61.6 0.633 0.367 0.965 0.728 -0.754

26 69.3 0.705 0.295 0.963 0.831 -1.06

27 62.5 0.663 0.337 0.959 0.687 -0.655

28 65.5 0.676 0.324 0.937 0.795 -0.941

29 67.9 0.684 0.316 0.935 0.875 -1.1

30 64.6 0.674 0.326 0.956 0.735 -0.87

31 69.8 0.702 0.298 0.977 0.89 -1.14

32 63.3 0.681 0.319 0.984 0.647 -0.661

33 66.1 0.686 0.314 0.982 0.744 -0.866

34 70.1 0.692 0.308 0.941 0.906 -1.22

35 73.2 0.714 0.286 0.962 0.979 -1.35

36 63.8 0.659 0.341 0.963 0.738 -0.762

37 70.5 0.727 0.273 0.973 0.825 -1.04

38 74.5 0.747 0.253 0.951 0.886 -1.2

39 71.9 0.726 0.274 0.953 0.881 -1.16

Table 5.2:: The cosmologies for the AbacusCosmos sets of simulations (both resolutions).

The cosmologies were chosen by a Latin hypercube algorithm centered on the Planck 2013

cosmology; see §5.4.
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H0 ΩDE ΩM σ8

00 & 00-0 to 00-15 67.3 0.686 0.314 0.83

01 67.3 0.686 0.314 0.78

02 67.3 0.686 0.314 0.88

03 64.3 0.656 0.344 0.83

04 70.3 0.712 0.288 0.83

Table 5.3:: The cosmologies for the emulator_1100box_planck and

emulator_720box_planck sets of simulations, all with ns = 0.965, w0 = −1, and

Neff = 3.04. The first cosmology represents fiducial parameters for which 17 boxes with

different phases were run. The latter four represent “derivative” boxes in which one

parameter (in bold) is changed at a time. Note that the cosmologies are actually chosen

in the space of physical densities Ωxh2, which is why a change in H0 results in change in

Ωx.
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box has size 1100h−1 Mpc and particle mass 4× 1010h−1 M�. Spline softening of

63h−1 kpc.

AbacusCosmos_720box Same as the above, but at higher mass resolution (1×1010h−1 M�)

and smaller box size (720h−1 Mpc). Note that these are not zoom-in simulations

of the larger boxes, but independent realizations of the power spectrum. Spline

softening of 41h−1 kpc.

emulator_1100box_planck 21 boxes: 16 with identical Planck cosmologies but differ-

ent IC phases, and 5 phase-matched boxes of single-parameter variations from the

Planck cosmology (±5% in σ8 and H0, plus a central Planck box). All boxes have size

1100h−1 Mpc and particle mass 4×1010h−1 M�. Plummer softening of 63h−1 kpc.

emulator_720box_planck Same as the above, but at higher mass resolution (1×1010h−1 M�)

and smaller box size (720h−1 Mpc). As with the AbacusCosmos boxes, these are not

zoom-in simulations. Plummer softening of 41h−1 kpc.

The 40 AbacusCosmos simulations are designed to allow estimation of derivatives

of cosmological measurables with respect to cosmology. They can either be used as an

ensemble to construct an emulator/interpolator, or each individual box can be differenced

with the central AbacusCosmos_planck box to provide an estimate of the derivative for

that particular change in cosmology.

The boxes do not provide much cosmic volume of any individual cosmology (1.7h−3 Gpc3

if both resolutions are combined), but the 17 phase-varied emulator_planck boxes pro-

vide additional volume and a path toward suppressing cosmic variance and estimating

covariance. The 4 emulator_planck single-parameter excursion boxes provide a more
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direct route to measuring derivatives but only for two parameters.

The motivation for two mass resolutions was first to provide a convergence test for

large-scale structure properties, at least in the intermediate regime well-sampled by both

resolutions (see §5.7.2). Second, the larger boxes provide the volume that is needed for

BAO-type studies (Klypin & Prada 2017 argue that modes longer than 1h−1 Gpc have

very little impact on the matter power spectrum), while the smaller boxes provide the

halo resolution that is needed by weak-lensing studies (see e.g. Wibking et al. 2019).

Our softening lengths — 41h−1 and 63h−1 kpc in the two box resolutions — were

chosen to support halos, not subhalos. Future enhancements to Abacus should make it

possible for us to reach dramatically smaller softening lengths. In the near term, we are

continuing to run simulations at these mass scales and resolutions to build volume. These

simulations will be made available on the release website as they finish.

In total, these 125 simulations represent roughly 200K CPU-hours, or 25K GPU-

hours, of computational effort. This is a relatively modest amount for a collection of 370

billion particles and is a testament to Abacus’ computational efficiency.

5.6 Data products: halos and power spectra

We provide three data products at every redshift slice: friends-of-friends (FoF) halos,

rockstar halos, and a high-resolution matter power spectrum. The redshift slices are

z = {1.5,1.0,0.7,0.5,0.3, [0.1]}, where the z = 0.1 slice is only provided for the higher

resolution “720box” simulations. Particle subsamples are included with the catalogs. The

data formats of each product are described on the data release website.
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5.6.1 Friends-of-friends

The friends-of-friends (FoF) algorithm links particles separated by less than a linking

length b, equal to 0.186 in our catalogs (expressed as a fraction of the mean particle spac-

ing). A halo is defined as a set of linked particles (Davis et al. 1985). Our implementation

is based on the University of Washington N-body Shop’s halo finder, and we include halos

down to 25 particles. The linking length 0.186 was chosen to correspond to an overdensity

contour of 100 times the background density using the percolation theory results of More

et al. (2011).

We compute a number of halo properties relative to the FoF centers of mass and veloc-

ity, including velocity dispersion, circular velocity profiles, and radial quantiles. However,

the center of mass is susceptible to “barbell” pathologies, in which two largely distinct

halos are connected by a chance alignment of a thin particle “bridge”. To guard against

this, we also compute a second level of FoF with a smaller linking length (equal to 0.117

in our catalogs). This linking length was chosen to capture half of the mass of a singular

isothermal sphere. We store the masses of the 4 most massive subhalos and additionally

compute global halo properties centered on the most massive subhalo. These allow for a

first-order defense against common FoF pathologies.

We provide a 10% subsample of particles both inside and outside halos (“halo parti-

cles” and “field particles”). Particles are assigned to be subsample particles as a pseudo-

random function of the particle ID, so the same 10% of particles are output at every

timestep. This allows for construction of crude merger trees and other simple box-to-box

comparisons. A uniform sampling of the density field (that is, a 10% sample of all par-

ticles) can be formed via the union of the halo and field particle subsamples. Particle
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information includes positions, velocities, and IDs.

5.6.2 Rockstar

rockstar (Behroozi et al. 2013) is a hierarchical halo finder that uses friends-of-friends in

six-dimensional phase space at successively smaller linking lengths to find halos and sub-

structure. The inner-most substructure defines a halo seed to which particles are assigned

based on their phase-space proximity. rockstar also can use temporal information (mul-

tiple time slices) to improve structure tracking, but we do not use this mode as the time

between our outputs is large. We run rockstar with mostly default settings, including

the default mass definition of Mvir; however, we report both regular rockstar masses

and strict spherical overdensity masses. Strict spherical overdensity masses contain all

particles, including those considered “unbound” and those not associated with the halo.

Subhalos are reported and tagged with their parent halo as decided by rockstar. We

also output a 10% subsample of particles in halos. The exact rockstar input file is

available with each catalog (rockstar.cfg).

5.6.3 Power spectra

We compute the matter power spectra by gridding the particles onto a mesh (20483 or

finer) with triangle-shaped cloud (TSC) mass assignment. We then Fourier transform the

density field, convert the result to a power spectrum, de-convolve the TSC-aliased window

function from Jeong (2010), and bin in spherical annuli. The resulting 1D power spectrum

is available for every simulation time slice.
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5.6.4 Plummer vs. spline data products

The two AbacusCosmos sets were run with spline softening, while the emulator_planck

boxes were run with Plummer softening (§5.2.3). The spline was developed partway

through the simulation campaign and was thus only applied to the remaining sets of

simulations. However, we also re-ran one of the Plummer boxes with spline softening

to calibrate differences in the data products between spline and Plummer. Those re-

sults are presented here. The simulation is also available on the data release website as

emulator_1100box_planck_spline_00 if further calibrations are required.

In Fig. 5.2, we show halo mass functions from the friends-of-friends halo finder for

Plummer and spline. The differences are small (< 3% for halos above 100 particles),

but the number of Plummer halos steadily increases with increasing mass (except for the

highest mass bin which has very few halos). The Plummer softening may be inflating

halos, causing large halos to come in contact with neighboring structures, increasing

their mass. At the low-mass end, inflating small, tenuously bound halos (below 100

particles) may be causing them to unbind, resulting in fewer halos. These trends are

almost completely insensitive to redshift. rockstar and rockstar SO halos behave

very similarly at the low mass end, but Plummer under-predicts the number of > 1000

particle halos by 1 to 3%. This is consistent with the picture that high-mass halos are

inflated with Plummer softening, since rockstar is less susceptible than FoF to over-

merging of inflated structures.

In Fig. 5.3, we show matter power spectra for Plummer and spline softening. As

expected, Plummer results in a loss of power at high k. At the Nyquist wavenumber of

the particle lattice, Plummer misses 6% of power compared to spline. This loss of power
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due to non-compact gravitational softening is a known phenomenon; see e.g. Joyce &

Marcos (2007a); Garrison et al. (2016). As with halo mass, there is almost no evolution

of this relation with redshift.

5.6.5 Example Python Interfaces

Example Python code is provided on the release website to load and manipulate the

halo catalogs, including particle subsamples. The data formats are also documented on

the website, allowing any user to write their own code to parse the catalogs. However,

the provided Python code can at least serve as an implementation example of the data

specifications. A wrapper that loads the halo catalogs into halotools5 format (Hearin

et al. 2017) is also provided.

Another halo occupation distribution (HOD) code that is well-integrated with the

Abacus Cosmos simulation suite is GRAND-HOD6. In particular, GRAND-HOD can

use the halo particle subsamples when populating a halo with satellite galaxies.

5.7 Validation

5.7.1 CosmicEmu and HaloFit

We validate our power spectrum results against CosmicEmu (Lawrence et al. 2017) which

produces a power spectrum as a function of cosmology. However, the AbacusCosmos

5http://halotools.readthedocs.io

6https://github.com/SandyYuan/GRAND-HOD
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cosmologies span a slightly larger parameter space than CosmicEmu, so we are only able

to do this test for 28 of our 40 sims.

Fig. 5.4 shows that AbacusCosmos and CosmicEmu are in very good agreement

(at the level of a few percent) for k ∼ 0.03 to 4 at z=0.5. At the low-k end, we see large

deviations due to cosmic variance, or finite box size7. At the high-k end, we see a downturn

in the Abacus power spectra past the Nyquist wavenumber of the particle lattice. This

downturn is expected due to the failure of particle systems reproduce linear theory near,

and especially past, kNyquist (Joyce & Marcos 2007a; Garrison et al. 2016).

Fig. 5.5 shows the agreement of the emulator_planck simulations with CosmicEmu

and HaloFit (Takahashi et al. 2012), as invoked through CAMB’s do_nonlinear feature

at z = 0.3. In particular, it shows that the low k scatter in the power spectrum seen in

Fig. 5.4 can be suppressed by averaging the results of many boxes (recall that these boxes

have fixed cosmology but different IC phases). The agreement is within 4% (the accuracy

quoted by CosmicEmu) for k ∼ 0.01 to 3, with a downturn before kNyquist due to the

Plummer softening (see also Fig. 5.3). The emulator_720box_planck_00-0 simulation

shows a small systematic deviation around k = 1 from the mean Abacus result, but we

find no evidence for misbehavior of this simulation in our diagnostics.

5.7.2 Convergence

We compare simulation data products in the intermediate regime well-sampled by both

emulator_720box_planck and emulator_1100box_planck. We examine the power spec-

7For statistics that need more cosmological volume, this low-k scatter can be averaged down with the

emulator_planck sims, which have 17 boxes of the same cosmology but different phases. See Fig. 5.5.
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trum and halo mass function at three different redshifts. In all cases, we average over all

17 boxes at each resolution to suppress sample variance.

The matter power spectrum agreement in Fig. 5.6 is excellent from k = 0.03 to k =

6 (the Nyquist wavenumber of the higher-resolution box), indicating that our results

are stable with respect to box size and mass resolution. To compare the matter power

spectra at incommensurate wavenumbers, we applied a cubic spline in log-log space to

the reference spectrum. However, at the smallest k the binning breaks the smoothness of

the power spectrum, so the cubic spline appears to slightly over-predict the disagreement

between the resolutions. Regardless, agreement in this regime is cosmic-variance limited

even after averaging over 17 boxes, so this discrepancy is not concerning.

The FoF halo mass function is converged to within 6% in the regime sampled by

at least 100 particles at both mass resolutions (Fig. 5.7). The lower mass resolution

systematically overproduces small halos; this is a known effect in friends-of-friends that

arises from the mismatch in spatial stochasticity in the particle sampling at the two

resolutions (More et al. 2011). See figure 10 of (Garrison et al. 2016) for a very similar

test, in which downsampling the higher-resolution simulation before running FoF produces

excellent agreement with the lower-resolution result. With rockstar, the downturn effect

almost entirely disappears (Fig. 5.8).

When considering rockstar SO masses, however, a substantial deviation is seen for

all but the largest halos (Fig. 5.9). At 100 particles (400 particles at the higher resolution),

30% more halos are found at the higher resolution. We speculate that the higher resolution

box finds more physically small halos (due to mass and softening resolution) near large

halos; these small halos then have their SO masses inflated by the presence of nearby
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structure since rockstar allows overlapping SO spheres and “double-counting” of mass.

5.8 Summary

We have presented a suite of cosmological N-body simulations produced by the new Aba-

cus code. The modest computational requirements of Abacus (a single GPU node

for a few days) enabled us to run one hundred twenty-five ∼ 1 Gpc boxes, each with 3

billion particles. These boxes span 40 cosmologies near Planck 2015, allowing for emula-

tion/interpolation in this important parameter region. The accompanying halo catalogs

include particle subsamples, allowing for detailed investigations of galaxy bias models and

other effects sensitive to dark matter halo structure like weak lensing. The data products

are publicly available and include example code to manipulate the catalogs.

As of May 2019, these simulations have been used in refereed works by ourselves and

others in Hada & Eisenstein (2018); Yuan et al. (2018); Wibking et al. (2019); Garrison

& Eisenstein (2019); Yuan & Eisenstein (2019).
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Figure 5.1: A corner plot representation of the cosmology space spanned by the

AbacusCosmos simulations, where we have combined ΩCDM and Ωb into ΩM. The blue

square marks the fiducial central cosmology.
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Figure 5.2: Comparison of the FoF halo mass function of two identical simulations that

differ only in the force softening technique (Plummer or spline). For halos larger than 100

particles, the differences are consistently small (< 3%), although the relative number of

Plummer halos steadily increases with increasing mass. There is almost no evolution of

this relation with redshift.
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Figure 5.3: Comparison of the matter power spectra of two identical simulations that

differ only in the force softening technique (Plummer vs. spline). As expected, the Plum-

mer simulation is missing power at high k (6% at kNyquist) due to the long tail of the

Plummer force softening law.
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Figure 5.4: Comparison of the z = 0.5 power spectra from the AbacusCosmos_1100box

simulations to the CosmicEmu power spectrum emulator (Lawrence et al. 2017). The

comparison is shown for the 28 cosmologies that fall within the CosmicEmu domain.

The shaded bar shows the 1% error region. Each line represents a simulation; the colors

have no meaning beyond distinguishing the lines. The overall agreement is very good; the

low-k differences are due to cosmic variance, while the high-k differences are due to the

finite resolution of the simulations.
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Figure 5.5: Comparison of the z = 0.3 power spectra from the emulator_720box_planck

simulations to the CosmicEmu (Lawrence et al. 2017) and HaloFit (Takahashi et al.

2012) power spectrum emulators. The inner shaded bar shows 1% agreement, while the

outer bar shows the 4% accuracy quoted by CosmicEmu. Each Abacus line represents

a simulation, all of which have the same cosmology but different initial condition phases.

The solid black line is the average of the Abacus lines. The overall agreement is very

good among Abacus, CosmicEmu, and HaloFit. The low-k scatter due to cosmic

variance is suppressed when averaging over multiple Abacus simulations, while the high-

k differences are due to the finite resolution of the simulations and Plummer softening.
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Figure 5.6: A comparison of the matter power spectrum at the two mass resolutions/box

sizes. In the intermediate k regime well-sampled by both resolutions, we expect the results

be converged, since we are averaging over 17 boxes to suppress sample variance. Indeed,

we find excellent agreement of ∼ 1% over a wide range of k. The agreement changes by

less than a percentage point from z = 0.7 to 0.3.
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Figure 5.7: A comparison of the FoF halo mass function at the two mass resolutions/box

sizes. The lower mass resolution box over-predicts the number of 100-particle halos by

5% compared to 400-particle halos at the higher resolution. This is an effect of friends-

of-friends and is not seen with rockstar; see §5.7.2.
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Figure 5.8: Same as Fig. 5.7, but for rockstar halos.
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Figure 5.9: Same as Fig. 5.7, but for rockstar halos with spherical overdensity masses.
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Chapter 6

Generating Approximate Halo

Catalogs for Blind Challenges in

Precision Cosmology

This thesis chapter was originally published as

Garrison, Lehman H., Daniel J. Eisenstein 2019, MNRAS, 485, 2407

Abstract

We present a method for generating suites of dark-matter halo catalogs with only a few

N-body simulations, focusing on making small changes to the underlying cosmology of

a simulation with high precision. In the context of blind challenges, this allows us to

reuse a simulation by giving it a new cosmology after the original cosmology is revealed.

Starting with full N-body realizations of an original cosmology and a target cosmology, we
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fit a transfer function that displaces halos in the original so that the galaxy/HOD power

spectrum matches that of the target cosmology. This measured transfer function can then

be applied to a new realization of the original cosmology to create a new realization of the

target cosmology. For a 1% change in σ8, we achieve 0.1% accuracy to k = 1h Mpc−1 in the

real-space power spectrum; this degrades to 0.3% when the transfer function is applied

to a new realization. We achieve similar accuracy in the redshift-space monopole and

quadrupole. In all cases, the result is better than the sample variance of our 1.1h−1 Gpc

simulation boxes.

6.1 Introduction

Cosmological N-body simulations are a computationally expensive but important tool for

forward-modeling a cosmological model to an observed distribution of galaxies. Analytic

methods cannot yet reproduce small-scale features in the galaxy field to the precision that

observations provide, but N-body simulations are too expensive to densely sample the al-

lowed cosmological parameter space. Thus, much attention has turned to semi-numerical

methods based on sparsely sampling the parameter space with N-body simulations. Such

techniques include “emulation”, or interpolation, and “warping”, or modifying the cosmol-

ogy of a simulation output (e.g. halo catalog).

Emulation typically focuses on certain key one-dimensional statistics like the power

spectrum (e.g. Heitmann et al. 2016), 2PCF (e.g. Zhai et al. 2018), and halo mass function

(e.g. McClintock et al. 2018). This allows for fast evaluation in the space of cosmological

parameters and possibly galaxy bias parameters, but analysis is limited to those statistics

and to the prescribed galaxy bias models. Warping, on the other hand, is typically slower
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but produces a full simulation output (e.g. Angulo & White 2010) or halo catalog (e.g.

Mead & Peacock 2014) to which any catalog-based analysis may be applied. This is our

approach in this work.

Our motivation is to develop a warping technique suitable for use in blind mock

challenges. This is an analysis verification methodology in which an analyzer is given

a mock galaxy catalog and asked to infer the underlying cosmology without knowing

the true values. This mimics real data analysis and helps avoid human bias in tuning

of fitting parameters that could cause underestimation of the systematic error budget

of the survey. A fast warping technique is desirable for blind challenges since it allows

a simulation to be used more than once. Normally, a simulation can never be reused

once its cosmology is revealed, but an accurate warping technique effectively re-blinds the

simulation by changing the underlying cosmology. This means that simulations can be

reused between blind challenge epochs, so computational effort can be spent on making a

few large-volume, high-quality catalogs instead of suites of single-use simulations.

This blind-challenge context has implications for what kinds of rescaling techniques

are allowable. The analyzer should not be given any hints as to the direction of the change

in cosmology, so changing the box size (e.g. to hold the non-linear mass scale fixed) is not

allowed. Also, the precision of the mocks must be high enough that errors of the size of

the analysis error budget can be identified, which itself is a fraction of the total survey

error budget.

In this work, we present a new warping technique focusing on high precision (∼0.1%)

for small changes in cosmology (∼1%), rather than rough precision for a large change

in cosmology. A 1% change is sufficient to re-blind a catalog at the expected level of
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precision of analysis of a upcoming galaxy surveys.

To achieve this level of precision, our warping technique requires a full N-body real-

ization of the target cosmology. This one realization can be leveraged into many warped

catalogs using more realizations of the original cosmology, as we will show. Having a

realization of the target cosmology is a requirement not all warping methods share, but

it allows us to generate mocks of high precision. Future extensions to this work will relax

this requirement.

6.2 Warping

6.2.1 Outline

Our warping procedure starts with two halo catalogs from phase-matched simulations

with slightly different cosmologies: the “original” and the “target”. The catalogs include

particle subsamples. The goal is to modify the clustering of the original catalog to match

that of the target. The halo clustering does not simply following the mass clustering—we

find the halo bias changes with cosmology at a non-negligible level—so we adjust the halo

clustering directly by displacing halos and halo particles (see Section 6.A for why we use

displacements instead of re-labeling of halo mass). The warping procedure consists of four

main steps:

1. displace halos by the difference of the 2LPT initial conditions in the two simulations,

scaled to the catalog redshift;

2. rescale halo radii (and other properties) as a function of abundance;
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3. iteratively fit a transfer function that displaces the original halos to match the target

halo power spectrum;

4. fit a second transfer function that adjusts the velocities of the original halos to match

the target redshift-space halo power spectrum multipoles.

Each of these steps will be explained in detail in the following sub-sections.

Although the resulting transfer functions are fit to a particular pair of phase-matched

simulations, they are applicable to a new realization of the original cosmology (as we show

in Section 6.3.4). This is how we generate many warped catalogs from a single realization

of the target cosmology. With our Abacus Cosmos suite of simulations (Garrison et al.

2018), for example, we have 20 realizations of a fiducial Planck cosmology and 40 with

different wCDM cosmologies but matched phases, so this technique can generate 800 mock

catalogs from 40 transfer function measurements.

6.2.2 Initial Condition Residuals

As with most warping procedures (e.g. Angulo & White 2010), our first step is to replace

the original large-scale simulation modes with those of the target cosmology. We generate

initial conditions (ICs) at zinit in the Zel’dovich Approximation (ZA, Zel’dovich 1970) for

both cosmologies using the zeldovich-PLT code of Garrison et al. (2016) which includes

particle discreteness corrections. We label these comoving displacement fields q1(xi) and

q′1(xi), where the prime indicates a quantity in the target cosmology, xi is the Lagrangian

coordinate of particle i, and q1 is the first-order (ZA) displacement. The associated

velocities are labeled by v1 (we will leave the argument xi implicit in the following). We
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also generate the second-order Lagrangian Perturbation Theory displacements (2LPT,

labeled q2) with the Abacus configuration-space method (Garrison et al. 2016), which

uses two force evaluations and reversal of particle displacements. We store the second-

order part separately from the first-order part so we can apply the correct redshift and

cosmology scaling for each.

These scalings are as follows:

q1(z) =

[
D(z)

D(zinit)

]
q1, (6.1)

q2(z) =

[
D(z)

D(zinit)

]2[
Ωm(z)

Ωm(zinit)

]−1/143

q2, (6.2)

where z is the catalog redshift and D(z) is the linear growth factor, which Abacus com-

putes via direct integration of the linear growth equation. Abacus does not compute

second-order growth factors, so in Eq. 6.2 we instead use the scalings of Bernardeau

et al. (2002) for the Ωm dependence in a flat cosmology. When computing the redshift

dependence of primed quantities, we use the target cosmology.

The sum of the 1st and 2nd order residual differences between the cosmologies forms

the total residual:

∆q = (q′1(z)−q1(z))+(q′2(z)−q2(z)). (6.3)

The velocity scaling is similar but carries a dependence on the growth rate f :

v1(z) =

[
D(z)

D(zinit)

][
f (z)

f (zinit)

]
v1, (6.4)

v2(z) =

[
D(z)

D(zinit)

]2[
Ωm(z)

Ωm(zinit)

]−1/143[
Ωm(z)

Ωm(zinit)

]6/11

v2, (6.5)

∆v = (v′1(z)−v1(z))+(v′2(z)−v2(z)). (6.6)

Again, Abacus computes the linear growth rate f but not the corresponding second order
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quantity, so we use the known Ωm scaling in Eq. 6.5. We store velocities as comoving

redshift-space displacements (that is, the same units as the positions), so we avoid any

explicit cosmology dependence via H(z).

We apply these position and velocity residuals to halo h by taking the mean residual

over the halo subsample particles:

∆q̄h =
1

Nss
h

∑
i∈h

∆q(xi), (6.7)

and likewise for the velocities. Nss
h is the number of subsample particles in halo h; we

typically use 10% of all halo particles. The subsample particles contain an ID number

that encodes the particle’s Lagrangian coordinate xi, and thus the residual displacement

∆q(xi) can be found. This averaging process samples the initial Lagrangian patch from

which the halo forms and effectively smooths the displacement field. We have also tried

introducing an explicit smoothing scale, but it has very little effect on the final result;

any difference gets absorbed by the transfer function (Section 6.2.4).

We apply the comoving halo displacement ∆q̄h to the halo center and to all its sub-

sample particles. The particles are simply “advected” along with the halo center. We will

consider internal halo structure changes in the next section.

In addition to the 10% halo particle subsample, we also have a 10% sample of all

particles at the catalog redshift z which is outputted during halo finding. We will use this

as a uniform sampling of the late-time matter density field in a later step. To keep this

field consistent with the displaced halo field, we save the initial condition residuals for

these particles.
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6.2.3 Halo Property Rescaling

We will now consider a basic prescription for rescaling internal halo structure by matching

halo population statistics between cosmologies. First, we must select the populations to

match. One choice is to rank halos by mass in one cosmology and make a mass cut, then

rank halos in the other cosmology by mass and make a number-density cut so the two

catalogs have the same galaxy density. In this work, we use a mass cut of 100 particles in

the original cosmology, chosen so that every halo has at least a few subsample particles

(from which the IC displacements were computed in the previous section). The abundance

match cutoff will likely fall in the middle of a mass bin in the target cosmology—that is,

many halos will have exactly 100 particles—so there is no clear abundance ordering in the

last bin. We select a random sample of halos in this bin mainly to avoid any pathologies

from correlations between catalog order and spatial order.

To rescale halo radii, we bin the halos by abundance, compute the median halo

radius in each bin, and take ratio between cosmologies. For small changes in cosmology,

we observe that this ratio changes monotonically with log-abundance and can be fit with

a line or low-order function. We then adjust particles radially in each halo according to

the ratio from this fit. The exact radius definition we use depends on the halo finder. For

the simple friends-of-friends halos (Davis et al. 1985) considered here, we use r50, or the

50th percentile of the radial particle distribution.

When considering redshift-space distortions, we apply this same rescaling procedure

to the halo velocity dispersion σv. Future extensions will consider more complicated

changes to halo structure, such as changes to concentration.
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6.2.4 Transfer Function

The previous two steps of applying IC residuals and rescaling halo properties are designed

to increase the agreement between simulations but will not achieve our target of 0.1%

precision. On large scales, small cosmological parameter changes cause the halo bias

to shift even for abundance-selected halo samples (Figure 6.1). On smaller scales, the

step of applying the IC residuals tilts the power spectrum due to the effective smoothing

imposed by averaging over subsample particles. A power spectrum fitting routine would

likely interpret this tilt as a change in cosmology.

We would like to force the clustering to match; we do so in Fourier space by moving

halos according to a transfer function T (k). The transfer function operates isotropically

on a “late-time displacement field”: we compute the gradient of the gravitational potential

of the late-time matter field and treat the resulting vector field as displacements. This

is the same idea as the Zel’dovich Approximation for initial conditions, except we are

operating on the late-time matter density. The idea is that these late-time displacements

will trace bulk flows of the matter and that by pushing the halos along these flows we can

increase or decrease the clustering of the catalog. To allow for changes in the shape of the

power spectrum, not just the mean amplitude, we modulate the late-time displacement

field by an isotropic function T (k) instead of a scalar.

Specifically, the late-time displacement field s(x) is computed as

s(x) = F−1 [s̃(k)] (6.8)

s̃(k) =


ik−2T (k)δ̃m(k)k, k ≤ kmax;

0, k > kmax,

(6.9)
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where δ̃m(k) is the Fourier transform of the matter density field from subsample particles

at the catalog redshift. We apply the initial condition residuals ∆q to these particles

before computing the density field. The inverse Fourier transform is indicated by F−1.

Since s̃(k) is computed with an FFT, s(x) exists on a lattice. We evaluate a halo’s

displacement using tri-linear interpolation from the lattice to the halo center. As with

the IC residuals, the halo particles are advected along with the halo center.

We now discuss how we use optimization to find T (k). We parametrize T (k) as Nbin

discrete segments linearly spaced from the fundamental mode kfund to kmax, the latter of

which is set by our desired analysis range. We label this discretized transfer function

T (ki). Our target clustering metric is a pseudo-HOD power spectrum computed by giving

every halo center a weight of 1 and every halo subsample particle a weight of ws = 0.007;

this choice yields a satellite fraction of about 25%. Using every subsample particle as

a “fractional satellite” has the effect of reducing the shot noise relative to a single HOD

realization. We compute the resulting overdensity field with TSC mass assignment and

deconvolve the window function upon computing the power (Jing 2005). We seek to min-

imize the difference in this quantity between original and target cosmologies. Specifically,

we minimize the difference in the real-space monopole P0(k):

χ
2 =

kmax

∑
ki

[P0(ki)−P′0(ki)]
2

2ασ ′2P0(ki)
, (6.10)

σ
′2
P0(ki) = 2P′20 (ki), (6.11)

where we take P0(ki) to be the monopole power in bin i and σ ′2P0(ki) to be the monopole

variance in that bin. As before, a prime indicates a quantity from the target simulation.

We drop N−1
modes from the formal sample variance definition since these are phase-matched

simulations, and also we only care about the monopole variance relative to the quadrupole
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variance (during fitting of the redshift-space velocity transfer function; see below). α is a

numerical “fudge factor” to rescale χ2 to a convenient range for convergence testing; we

typically use α = 10−6.

The process of drifting the halos and applying TSC mass assignment is non-linear, so

we use a non-linear numerical optimizer to minimize χ2 with respect to T (ki). For kmax =

1hMpc−1 and a 5123 FFT mesh, we typically use Nbin = 10, so this is a 10-dimensional

optimization problem. We have tried Powell’s method (Powell 1964) and Nelder-Mead

(Nelder & Mead 1965) from the SciPy package (Jones et al. 2001–); both work well. For

a trial transfer function T̂ (ki), a single χ2 evaluation consists of the following steps.

1. Apply T̂ (ki) to the late-time displacements s̃(k) (Eq. 6.9); call this field ˆ̃s(k).

2. Take the inverse FFT:

ŝ(x) = F−1[ˆ̃s(k)]. (6.12)

3. Interpolate the displacements ŝ(x) to halo centers using tri-linear interpolation.

4. Apply the halo center displacements to halos and halo subsample particles.

5. Compute the resulting power spectrum monopole P0(ki).

6. Compute χ2 (Eq. 6.10).

Note that s̃(k) can be precomputed from the matter density field and is not updated

during iteration.

Executing the above 6 steps takes about 3 seconds with 1.5×106 halos and 5.5×107

halo particles on a 24-core machine. Powell’s method uses about 6 steps and 1400 χ2
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evaluations for a total optimization time of 1.2 hours. The resulting P0 matches P′0 to 0.1%

down to kmax (except for the sample-variance-dominated large scales); see Section 6.3.

The choice of kmax is set by our science goals: we want to modify the power spec-

trum over the range that we will reasonably analyze. Another consideration is the power

spectrum mesh size: we want kmax to be somewhat smaller than kNyquist of the mesh to

avoid the worst of the aliasing effects, but a larger mesh slows requires more memory and

makes the optimization slower.

6.2.5 Redshift Space: Residuals, Velocity Dispersion, and Trans-

fer Function

The discussion thus far has focused on the real-space power spectrum, but we would like

to match the redshift-space monopole and quadrupole, too. Thus, we must consider how

to warp the velocities. We will apply initial condition residuals, rescale halo velocity

dispersion, and apply a transfer function, as we did with the positions. The IC residuals

and transfer function modify the two-halo “Kaiser” redshift-space distortions (RSD); the

velocity dispersion modifies the one-halo “Finger-of-God” RSD.

Applying the velocities from the IC residuals to the halo centers and particles is

straightforward; the prescription is already given in Eqs. 6.4–6.6. We apply the halo

center kick identically to all halo particles.

We then rescale halo particle velocities according by matching velocity dispersion σv

as a function of abundance against the target cosmology. As with the radius rescaling,

we find that the ratio of the medians is a slowly changing function of abundance and can
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be fit with a line. The particle velocities are simply scaled by this fit to the ratio.

Before starting the velocity warping, we apply one other correction. The late-time

displacements s(x) in Eq. 6.8 imply a unique velocity w(x) due to their dynamical ori-

gin (just as displacements in Zel’dovich Approximation initial conditions have a unique

velocity):

w(x) =
f (z)H(z)

H0
s(x). (6.13)

The f (z)H(z) factor is a statement of redshift z dynamics and gives the comoving velocity

at that redshift. The H−1
0 factor converts this to the comoving redshift-space displacement

for a z = 0 observer. We use redshift-space displacement units for all velocities.

The velocity transfer function framework is largely the same as the displacement

transfer framework, except that we use the line-of-sight late-time velocities instead of

the 3D late-time displacements. The density field from which the late-time velocities are

computed and the halo positions to which they are interpolated remain in real-space,

but the power spectrum is computed on the redshift-space quantities. We pre-apply the

peculiar velocities to the halo particles as redshift-space distortions, so the velocity transfer

function just has to drift them by the same amount as the halo center.

The velocity transfer function is still an isotropic monopole, as any velocity modifi-

cations must be isotropic. We choose a line of sight for the RSD, however, so we only

apply the transfer function to the z velocities for efficiency while fitting. We operate in

the flat-sky approximation in a periodic simulation box, but the final warped catalog has

the velocity modification applied isotropically, so the redshift space distortions should be

accurate in any direction as long as the z axis is not special.
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We adopt a χ2 that includes both the redshift-space monopole and quadrupole:

χ
2 =

kmax

∑
ki

[P0(ki)−P′0(ki)]
2

2ασ ′2P0(ki)
+

[P2(ki)−P′2(ki)]
2

2ασ ′2P2(ki)
, (6.14)

σ
′2
P2(ki) = 10P′0(ki)

2, (6.15)

where we have used `= 2 in the multipole variance 2(2`+1)P′0(ki)
2. As with the monopole

variance (Eq. 6.11), we drop the formal N−1
modes dependence from the quadrupole variance,

since these are phase-matched simulations and the variance only matters relative to the

monopole.

The fitting takes about 9 steps with 2300 function evaluations, although it is largely

converged in half that number. This takes about 2.3 hours on a 24-core machine.

6.3 Results

6.3.1 Outline

In the following, we test our warping procedure on the AbacusCosmos_1100box_00-0

and AbacusCosmos_1100box_01-0 simulations which are available on the AbacusCosmos

website1. These are two phase-matched simulations with 14403 particles in 1100h−1 Mpc

boxes and are identical except for a 1% change in σ8—the former (the original) has

σ8 = 0.83, while the latter (the target) has σ8 = 0.8383. We focus on this simple cosmology

change for now while we validate the basic premise of our warping. We use friends-of-

friends halo catalogs at z = 0.5 and 10% halo and field particle subsamples. We use

1https://lgarrison.github.io/AbacusCosmos/
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halos of 100 particles or more in the original cosmology, which corresponds to halo mass

3.7×1012 h−1 M�. There are 1.5×106 of these halos in a 1.3h−3 Gpc3 volume, for a halo

density of 1.1×10−3h−3 Mpc3.

First, we examine the effect of the IC residuals, halo radius rescaling, and the transfer

function in real space, then in redshift space. Finally, we check that a transfer function

measured on one pair of simulations can be applied to another with similar accuracy.

6.3.2 Real Space

Figure 6.1 shows the results of the warping procedure on the real-space power spectrum

monopole and cross correlation. First, we note that the halo bias evolves rapidly from

the original to target simulations—for a 1% change in σ8, we should see a 2% change in

the halo power spectrum, assuming constant halo bias. (We do indeed measure exactly

a 2% change in the large-scale matter clustering.) Instead, we see almost no change;

the halo bias has almost exactly canceled the change in σ8. Thus, when we apply the

IC residuals from the large-scale modes, the halo power spectrum overshoots that of the

target cosmology.

The bias cancellation does not mean that the catalog can be used as a realization of

the new cosmology without any modification, of course. This is seen most immediately in

the redshift space ` = 0 and ` = 2 clustering (Figures 6.3 & 6.4) where biases of 0.5–1.0%

are observed; our redshift-space warping will successfully deal with those in Section 6.3.3.

Despite the power spectrum overshoot due to applying the IC residuals, we see the

small-scale cross correlation actually increases. The cross correlation is already good on

all scales—the error is smaller than 1.5% for k < 1hMpc−1—but this gives us confidence
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that the IC residuals are moving halos to more closely lie on top of their counterparts in

the target cosmology.

The next step is to rescale halo radii according to r50, the median halo radius, as a

function of abundance. The halo r50 versus abundance for the two cosmologies is given

in Figure 6.2. This also shows the trend line that we fit to the change in median r50; we

move halo particles radially according to this fit. The scatter in a given bin is quite large

but the ratio of the medians appears robust.

Figure 6.1 shows the effect of the radius rescaling on the power; as expected, the only

impact is on small scales. The radius changes are generally quite small (less than 0.5%)

which translates into a < 0.1% shift in power even at our kmax = 1hMpc−1.

The direction of this change is such that agreement with the target simulation actually

decreases. This is because most halos in the original cosmology have larger r50 than their

counterparts in the target cosmology, despite the smaller σ8. This may be an effect

of halos forming earlier and thus having higher concentrations with a higher σ8. This

change is small enough that the cross-correlation is unaffected and the transfer function

can easily compensate. We prefer to match the 1-halo abundance statistics and deal with

the consequences in the 2-halo clustering rather than neglect the former; otherwise, we are

likely to end up with a catalog that looks accurate for this particular halo mass cut/HOD

but not any other.

Finally, we fit the real-space transfer function using 6 steps of Powell’s method (Sec-

tion 6.2.4). This brings the monopole power of the warped simulation into 0.1% agreement

with the target to kmax = 1hMpc−1; this is more precise than the sample variance of the

box across the whole fitted range.
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We note that the measured transfer function is a relatively smooth function of k and

would thus likely be amenable to parametrization as a low-dimensional function instead

of 10 independent segments. This would greatly accelerate convergence of the non-linear

fit and probably eliminate the minor “sawtooth” effect observed at high k due to use of a

constant value to inside each bin.

We observe a tiny decrease in the cross correlation as a result of the transfer function.

Since the two-point clustering is the relevant quantity for most cosmology analysis, this

very small loss of cross correlation is relatively unconcerning. This is most likely an effect

of halo mergers and splits that are not explicitly modeled here; such a problem would be

compounded by our use of FoF halos, which are known to over-merge (e.g. More et al.

2011). We will investigate this in future work with more sophisticated halo catalogs.

6.3.3 Redshift Space

Figures 6.3 & Figure 6.4 show the results of the velocity warping procedure on the redshift-

space monopole and quadrupole, respectively. We see in both that the real-space warp-

ing restores some power on large scales, but the clustering amplitude is offset on small

scales. The first step of the velocity warping, matching σv, increases both monopole and

quadrupole agreement. In Figure 6.5, we can see that the velocity dispersions are higher

in the target cosmology, so boosting the dispersions in the original cosmology will tend to

decrease the monopole and increase the quadrupole as galaxies are spread out along the

line of sight.

The next step of the redshift-space warping is to fit the velocity transfer function,

but unlike in real space, this transfer function must simultaneously satisfy the monopole
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Figure 6.1: The results of the real space warping in the real-space monopole at z = 0.5.

The dotted lines are from the target simulation; each of the solid lines shows the original

simulation during a stage of the warping. Even with no modification, the original catalog

matches the target catalog to a striking degree due to the halo bias changing to cancel

the change in σ8. Thus, displacing halos by the difference in the ICs overshoots. The

final step of applying the transfer function brings the power into 0.1% agreement with

the target even past our chosen kmax = 1hMpc−1. The broad shaded region indicates the

sample variance error on the power spectrum; our fitting is consistently better than this

variance. The edges of the transfer function bins are marked with vertical ticks in the

rectangular shaded region which indicates our target of 0.1% precision. The color scheme

is matched to the redshift-space warping plots (Figures 6.3 & 6.4).
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Figure 6.2: Top panel: median halo radius r50 versus abundance in two cosmologies.

Bottom panel: the fractional difference in the values in the top panel. The relative radius

changes monotonically with mass; we fit a line to the trend (bottom panel, dashed line)

and move halo particles radially according to this fit. The fact that this fit passes through

zero indicates that massive halos are slightly larger and less massive halos are slightly

smaller in the target cosmology. The shaded region in the upper panel indicates the 25th

to 75th percentiles of the r50 distribution in each bin.

215



CHAPTER 6. HALO CATALOGS FOR BLIND CHALLENGES

and quadrupole. Even under with this constraint, the transfer function does a very good

job: the power matches the target within the sample variance of both multipoles to our

chosen kmax = 1.0hMpc−1. The quadrupole is inherently nosier than the monopole, but

it is clear that the fit is bringing the simulations into better agreement on all but the

smallest scales.

The slight negative offset in the small-scale quadrupole pairs with the slight positive

offset in the small-scale monopole. This likely indicates tension between the two, which

is unsurprising given that the velocity transfer function strictly operates on two-halo

velocities and can make no modifications to internal halo structure. On small scales,

the power is dominated by internal halo velocity dispersions, so attempting to reproduce

this with bulk halo motions is likely to fail. This is likely the cause of the slight loss of

cross-correlation on small scales as well.

6.3.4 Transferring the Transfer Function

The utility of this warping methodology is based on the assumption that a transfer func-

tion measured on one pair of phase-matched simulations can be applied to a simulation

with different initial phases. We now test that assumption. Figure 6.6 shows the applica-

tion of the real-space transfer function (Figure 6.1) and redshift-space (velocity) transfer

functions (Figures 6.3 & 6.4) to a new simulation. The results are very good: the real

space monopole matches the target better than sample variance across the whole k range

and better than 0.3% across almost all of the k range. The results are similar in the

redshift-space monopole and quadrupole: a mild degradation compared to the original

phases but better than sample variance limits to kmax.
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Figure 6.3: The results of the warping on the redshift-space power spectrum monopole.

The real-space warping (i.e. the end result of Figure 6.1) helps bring the large-scale power

into alignment but fails on small scales. Matching halo velocity dispersions and fitting

a velocity transfer function match the power to the target within the sample variance to

our chosen kmax = 1hMpc−1. See Section 6.3.3. The color scheme is matched to the other

warping plots.
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Figure 6.4: The same results for warping in redshift-space as Figure 6.3 but seen in the

quadrupole. Note that the second panel is the difference in the quadrupole relative to the

monopole, due to the zero crossing of the quadrupole power around k = 0.2hMpc−1. The

horizontal shaded bar thus highlights the
√

5× 0.1% error region, since the quadrupole

variance is 5 times that of the monopole. Overall, these results show much the same

trends as the redshift-space monopole which are that the real-space warping helps but the

σv matching and velocity transfer are necessary for precision matching. The color scheme

is matched to the other warping plots.
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Figure 6.5: Top panel: median halo velocity dispersion σv versus abundance in two

cosmologies. Bottom panel: the fractional difference in the values in the top panel. As with

the radius (Figure 6.2), the relative σv is well fit by a line (bottom panel, dashed). Unlike

the radius, however, the sign of the difference is the same across the whole abundance

range. Thus, σv is always larger in the target cosmology for the mass range examined

here. The shaded region in the upper panel indicates the 25th to 75th percentiles of the

σv distribution in each bin.
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The degradation in the real-space monopole appears largely as smooth deflection of

peak amplitude ∼ 0.3% from k = 0.1–1hMpc−1. This may be due to different non-linear

couplings of the large-scale modes to small-scale structure in this pair of simulations

compared with the pair on which the transfer function was measured. At all scales this

effect is sub-dominant to sample variance, however.

6.4 Discussion and Future Directions

We have developed a warping framework for changing the cosmology of a simulation, focus-

ing on highly accurate warped catalogs for small changes in cosmology rather than roughly

accurate catalogs for large changes in cosmology. We have used a halo displacement tech-

nique to modulate the clustering amplitude and thus avoided difficulties associated with

an Eulerian re-weighting scheme (Section 6.A). We have shown that the real-space power

spectrum monopole can be controlled to 0.1% precision, or 0.3% when measured on one

pair of simulations and applied to another. The redshift space monopole and quadrupole

are noisier and but can still be controlled to about 0.3%. In all cases, this error is better

than the sample variance limit for a 1.1h−1 Gpc box.

This work has focused on a simple change in cosmology (a 1% change in σ8) whose

effects on the power spectrum are readily understood. Even in this simple case, we found

rapidly evolving halo bias, hence the need for a directly-fit transfer function rather than

one motivated from initial conditions or first principles. The next step of this work will

be to test the effect of more complicated cosmology changes that also modulate the shape

of the power spectrum.
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Figure 6.6: A summary of the results of taking the real-space and velocity transfer

functions measured on one pair of simulations and applying them to another pair with

different initial phases. The top panel shows the ratio of the real-space monopole with

the target; the warped result is better than sample variance across the whole k range.

The middle panel shows the redshift-space monopole, which is similarly accurate up to

our chosen kmax = 1hMpc−1. The bottom panel shows the difference of the redshift-space

quadrupole relative to the monopole (due to the zero-crossing in the quadrupole; see

Figure 6.4). The quadrupole is noiser but matches better than sample variance across

the whole k range. The horizontal shaded bar in the first two panels shows our target of

0.1%; in the last panel, this is
√

5×0.1% since it is relative to the monopole. The real-

space transfer function measurement is shown in Figure 6.1; the redshift-space (velocity)

function measurement is shown in Figures 6.3 & 6.4.
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The parametrization of T (k) as 10 independent bins was chosen to allow full flexibility

in the shape of the transfer function. The measured transfer functions in this work

were generally smooth which should admit lower-dimensional parameterizations; this is a

natural next step for this work. This will significantly accelerate the optimization step.

However, we expect that more complicated changes to the cosmology will cause shape

variations in the transfer function, so we must ensure that any simpler parametrization

can capture these as well.

We used friends-of-friends halos here for their simplicity, but FoF has well-known

pathologies that may be causing some mild difficulties in the halo property rescaling and

small-scale transfer function. We expect this method will be applicable to other halo

finders, such as Rockstar (Behroozi et al. 2013) or spherical overdensity, and will test

this in future work.

Finally, we used a pseudo-HOD prescription when assigning galaxies to halo particles

in order to suppress shot noise, but we must test that the warped catalog behaves the

same as the target catalog for a range of real HODs and HOD parameters.

We believe this technique will be suitable for applications that require high-quality

mocks for small variations in cosmology, such as blind mock challenges. Once we validate

our method on more complicated cosmology changes, we will be able to produce suites of

simulations suitable for warping. The design of such a suite might be similar to that of our

Abacus Cosmos simulations, with 20 realizations of a fiducial cosmology and 40 phase-

matched simulations with different cosmologies. Such a design would allow us produce 800

mock catalogs from 40 transfer function measurements. Furthermore, it may be possible

to interpolate the transfer functions between cosmologies. This will maximize the utility
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of simulations in blind challenges, as we will be able to re-blind the same simulation many

times.
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6.A Eulerian Transfer: Failed Warping Procedure

Rather than a non-linear fit to a transfer function on the late-time displacements, we

initially tried to fit a transfer function directly on the Eulerian pseudo-HOD density

field. This approach had the advantage of being linear and solvable via a least-squares

minimization. The goal was to find the best-fit T (k) such that

δ̃
′(k) = T (k)δ̃ (k). (6.A)

As before, the prime indicates a quantity in the target cosmology. This can be posed as

a complex least-squares minimization of

∑
i
|δ̃ ′i −T (k)δ̃i|2 (6.B)
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in each bin of k. Imposing the constraint that T (k) must be real gives the solution

T̂ (k) =
∑i Re( ˜δ ′∗i δ̃i)

∑i |δ̃i|2
, (6.C)

where the asterisk denotes complex conjugation. The halos (or the halo occupation statis-

tics) would then be re-weighted by this transfer function to reproduce the target density

field by construction.

This had two problems. The first was that any roll-off in cross-correlation towards

high k would manifest as a suppressed transfer function, as evidenced by the fact that T̂ (k)

can be rewritten as the product of two terms, the first of which is the cross-correlation:

T̂ (k) =

[
∑i Re( ˜δ ′∗i δ̃i)

∑i |δ̃ ′i ||δ̃i|

][
∑i |δ̃ ′i ||δ̃i|

∑i |δ̃i|2

]
. (6.D)

A cross-correlation of less than 1 was observed (Figure 6.1) and suppressed the best-fit

transfer function. The second term is related to the relative mode amplitudes and can

be greater than 1, but any noise will reduce the covariance of the amplitudes and thus

suppress the ratio. We observed this effect as well. A least-squares fit on |δ | or |δ |2

instead of δ would suffer from this same amplitude cross-correlation effect.

The second and more severe problem was that the re-weighted density field had no

real-space positivity constraint, as it was constructed in Fourier space. Thus, applying

the transfer function caused large regions of δ <−1 in the simulation voids. The problem

was severe enough that clipping these values to −1 distorted the power spectrum. Re-

weighting halos with negative values was deemed too unphysical to be tenable.

As a result of these difficulties with the Eulerian transfer function, we developed the

transfer formalism with displacements used in the rest of this work.
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Conclusions

Large-scale structure will be a leading probe of cosmology in the upcoming decade. As the

number of unexplored modes on the two-dimensional surface of last scattering decreases,

the information encoded in the 3D density field of the universe will become ever more

important. We will not realize this potential if the modeling of the non-linear cosmological

density field is not sufficiently precise, however. This places two demands on the modeling:

unbiased results and large statistical samples.

In this thesis, we have addressed both of these challenges our cosmological N-body

code Abacus. With a combination of new mathematical techniques to solve periodic

Newtonian gravity from Metchnik (2009) and commodity computer hardware, we have

executed simulations of unprecedented speed that are simultaneously orders of magnitude

more accurate than results from comparable codes. The efficiency of Abacus tremen-

dously reduces the computational hurdle for reaching the large simulation volumes re-

quired for validation of surveys like DESI, and the accuracy of the method is a substantial

step towards ensuring they are unbiased.
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Furthermore, the accuracy of Abacus has allowed detailed comparisons of the results

of N-body simulations with analytic predictions. For example, in Chapter 3 we were able

to recover linear theory at z = 0 better than 0.01% (while other codes disagreed at 0.5%),

and in Chapter 4, we were able to validate our 2LPT implementation by directly simulating

the growth of structure starting from z = 4999.

This is just the beginning. With Abacus, we finally have a tool that allows us

to explore the extent to which N-body simulations actually reflect the physical system

that they purport to model—the Vlasov-Poisson distribution of a collisionless cold dark

matter species. Detailed comparisons with scale-free simulations (Appendix A) and other

techniques will allow us to probe the limits of N-body deep in the non-linear regime. Only

then will we be able to say whether our models of CDM large-scale structure are biased

or not.

The public release of Abacus will be transformative for testing analytic methods

in large-scale structure, especially techniques like perturbation theory and effective field

theory where one attempts to directly model the growth of CDM structure. Numerical un-

certainties will finally be able to be removed from these comparisons (even if uncertainties

in how well N-body models the real universe cannot yet be removed).

Of course, the allowable cosmological parameter space is shrinking as the parameters

of ΛCDM are increasingly well measured. Thus, it is worth considering if large suites

of N-body simulations are really needed if there is “nothing left to measure.” So long as

dark matter and dark energy’s fundamental natures remain unknown, ΛCDM will be an

incomplete theory. Exploring extensions to ΛCDM will thus be an important part of the

dark energy program of the next decade and beyond. The dimensionality of the parameter
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space constrained by data will be increasing and theoretical models must keep pace.

Full N-body simulations will not be needed for every survey validation task, especially

as approximate methods improve. The future of large-scale structure modeling will likely

be a mix of approximate methods for testing observational systematics and N-body for

theoretical systematics, with emulation techniques for performing inference in the many-

dimensional parameter space that will be constrained by upcoming surveys. Abacus is a

small piece of this large puzzle but one that we hope will help increase our understanding

of the universe at large.
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Appendix A

Scale-Free Simulations

A.1 Background

Scale-free simulations are a classic test problem in cosmology in which an N-body simu-

lation is initialized with a power-law power spectrum and the background cosmology is

ΩM = 1 (Einstein-de Sitter, EdS). The resulting gravitational clustering is expected to be

self-similar in time (Efstathiou et al. 1988). In other words, the clustering on small scales

at early times is expected to be statistically identical to clustering on large scales at late

times. The only scales imprinted on the simulation are the finite particle mass, finite box

size, finite starting redshift, softening length, and initial particle arrangement (e.g. lattice,

used here, or glass). Thus, any deviation from self-similarity must be due to one of these

or inaccurate numerics. This should be true even in the deeply non-linear regime which

is the true strength of this method: it is the only systematic test that allows for precise

identification of resolution-dependent effects of arbitrary complexity.
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Scale-free tests have traditionally been muddled by insufficient code accuracy or

thwarted by the computational requirements. A steeper power law shrinks the well-

resolved region between the box scale and particle scale, so a testing a small-scale ΛCDM-

like power law of index n = −2.5 requires large N and box size. Abacus is uniquely

well-suited for these kinds of tests with its combination of accuracy and speed. Thus, we

can cleanly separate the question of code accuracy and physical correctness.

The dimensionless units in which the simulations are self-similar are given by the

“non-linear length scale”:

sNL ∝ a2/(3+n). (A.1)

The associated non-linear mass scale is simply given by the cube of the length scale:

MNL ∝ a6/(3+n). (A.2)

A.2 Simulations

We have run three N = 10243 simulations for n = −2 with decreasing values of the soft-

ening length: ε = 1/15, 1/30, 1/60, where the particle spacing is unity. We will present

results from the intermediate softening in this appendix; full results will be presented in

a forthcoming paper.

The simulations are initialized with the tophat standard deviation at the particle

spacing scale σl = 0.03. Outputs begin when σl = 0.56 and proceed for 38 time slices.

Each slice is output at a time, or epoch, where the non-linear mass scale has increased by

a factor of M0.5
ML from the previous slice. The outputs thus span more than 6 octaves in

length scale and 18 octaves of mass scale—factors of ∼ 72 and ∼ 370,000.
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A.3 Two-Point Correlation Function

The binning of the two-point correlation function analysis (2PCF) was set up in a scale-

free manner, such that when rescaled by sNL the bins lie exactly on top of their self-similar

counterparts. This facilitates robust comparisons rather than using spline or some other

interpolation procedure on a set of fixed comoving bins.

Since we are probing a factor of ∼ 72 in non-linear scale length, the largest bins at late

times get quite large and thus expensive to compute. We therefore exclude bins above a

certain comoving scale as those are relatively well-converged anyway, at least with respect

to softening and particle mass—not so with respect to finite box size! But finite box size

tests may be better handled by the power spectrum analysis.

We show the raw and rescaled 2PCF results in Figures A.1 & A.2. The phenomenol-

ogy is rich: in the raw results, at early times one can see the imprint of the initial lattice

configuration. The system eventually “Poisson-izes” and shows smooth, scale-free evolu-

tion over a range of scales. At late times, there are small but coherent deflections in the

large-scale results; this could be due to finite-box-size effects, although it is difficult to

say, given that the scale is 1/200 the box size.

On small scales at all times, we see suppression from the softening extending to

many times the softening scale. Quantitatively identifying the point at which the results

converge to the scale-free solution (to within, say, 1%) sets an effective resolution scale.

This will be measured in upcoming work.

Another way to test the self-similarity is to compare each epoch with the self-similar

prediction from a later epoch. This test is shown in Figure A.3. The “later epoch” is
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Figure A.1: Raw two-point correlation functions for power-law index n = −2 and soft-

ening length ε = 1/30 (where the initial particle spacing has length unity). Later slices

appear in darker colors; the legend is given alongside the rescaled correlation functions in

Figure A.2. The wiggles at early times near the particle spacing scale are the “memory”

of the initial lattice configuration of the system.
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Figure A.2: Rescaling of the correlation functions in Figure A.1. ε and ∆ are marked

on the abscissa for sNL = 1. All of the lines would lie on top of one another if there were

no finite scales in the simulation; the fact that they do not means that self-similarity is

being broken. The flattening towards small separation is likely due to a combination of

softening and finite particle mass. The lower non-linear length scale sNL corresponds to

earlier times.
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Figure A.3: The ratio of the 2PCF at a given epoch with its prediction from a later

epoch scaled self-similarly to the current epoch. In detail, each epoch is compared with

8 epochs later, or a factor of 16 in MNL. Due to the presence of softening and finite

particle mass, the 2PCF does not converge to the self-similar solution even in the late

time, strongly clustered regime (dark lines, small scales).

233



APPENDIX A. SCALE-FREE SIMULATIONS

chosen to be 8 epochs ahead of the current epoch, such that the non-linear mass scale

has increased by a factor of 16. After early transients resolve (likely due to lack of power

below the particle spacing scale in the initial conditions), the 2PCF appears to converge

to a stable result. This stable result, however, does not match the self-similar prediction.

This is expected due to the presence of softening and finite particle mass; disentangling

the contribution of the two will require analysis of simulations with different softening

lengths (or mass resolutions).

A.4 Power Spectrum

The binning of the power spectrum analysis was set up in a scale-free manner, similar to

the binning for the 2PCF. Furthermore, we also changed the size of the FFT mesh itself

in a scale-free manner. This is because the FFT power spectrum estimator is not perfect

on small scales: there are aliasing and windowing artifacts that remain even after dividing

out the alias/window functions. If kNL is changing with respect to kNyquist, these artifacts

would appear as spurious evolution of the rescaled power spectrum. But the effects are

relatively smooth with respect to the ratio k/kNyquist, so if one can arrange kNL/kNyquist to

be constant, then these effects should divide out to a good approximation.

However, the dynamic length range of 72 is punishing, since the FFT memory re-

quirements grow with the inverse cube of the targeted length scale. In other words, if we

set up a 35003 FFT mesh at the first time slice, then at the last time slice the FFT mesh

is only 503! We would like to probe to higher k at intermediate and late times without

losing the property of holding kNL/kNyquist fixed.
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This leads to the idea of power spectrum“tracks”: at half a dozen log-spaced“anchor”

redshifts, we start a 35003 FFT mesh and proceed with smaller meshes in a scale-free

manner towards lower redshift. These form a track of power spectrum measurements

across time slices that can safely be compared to one another, since kNL/kNyquist is held

constant. The last time slice thus has 6 FFT measurements.

In detail, kNL/kNyquist cannot be held perfectly constant since we must have an integer

number of FFT mesh cells. But the Nyquist effects are fairly smooth, so getting the scaling

correct to first order should suppress the worst effects.

Figures A.4 & A.5 show the raw and rescaled power spectrum results. Compared

to the 2PCF analysis, the challenge of the power spectrum analysis becomes clear, espe-

cially in the second figure: the comparison is very noisy at large scales due to the mode

quantization from the periodic box. The fundamental mode is fixed in comoving units

but evolves in scale-free units, so the cross-epoch comparison is difficult. The results are

presented here without smoothing over bins, but even aggressive smoothing/coarsifying

does not remove the effect entirely. We will have to consider carefully how to interpret

these results, perhaps through interpolation or model fitting.

A.5 Upcoming Work

The next step in this work is to identify converged scales and their evolution with scale

factor, and repeat the analysis for different spectral index and softening length. The

interpretation of the power spectrum results will require more consideration, but the

results of the 2PCF analysis should be an excellent starting point.
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Figure A.4: Raw power spectrum results with multi-track scale-free binning. Within

a track, the ratio kNL/kNyquist is kept fixed by progressively shrinking the FFT mesh

size. Multiple tracks are measured so that late times can be probed to small scales, even

though kNyquist is shrinking. Noise from the mode quantization is visible on large scales;

the emergence of Poisson noise can be seen on small scales.
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Figure A.5: Same as Figure A.4 but in scale-free units. N.B. the axes do not span the

same k or P(k) range in each panel; they are left independent so that the full dynamic

range can be presented in each. See the previous figure for the absolute magnitudes of

the results.
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These scale-free tests necessarily use a power-law power spectrum and EdS back-

ground. Of course, neither of these are strictly true in ΛCDM. But simulating multiple

n at least gives bounding behaviors; interpolating between n to the effective spectral in-

dex of a given scale in ΛCDM seems a promising route to estimating systematic errors.

And ΛCDM does behave like EdS at early times; it’s unclear how much differences would

matter even at late times as long as the comparison is done by matching the non-linear

ΛCDM mass scale to the EdS value.

Many more tests besides two-point statistics are possible on these simulations. In-

deed, any statistic one can dream up to measure at one time should rescale to another

time. The most informative statistics for deciding the trustworthiness of N-body simula-

tions is still an area of investigation.
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Appendix B

Numerically Stable Computation of

σ8 with a Power-Law Power

Spectrum

Cosmologies with a power-law power spectrum (P(k) = kn) have an analytic form for σ2(R)

with a spherical tophat window WT :

σ
2(R) =

∫ d3k
(2π)3W̃ 2

T (kR)P(k)

=
∫

∞

0

k2dk
2π2

[
3(sin(kR)− kRcos(kR))

(kR)3

]2

kn

=
9(n + 1)2−n−1R−n−3 sin

(
πn
2

)
Γ(n−1)

π2(n−3)
, (B.1)

where we used the Fourier transform W̃T (kR) of the spherical tophat window. The result

in the last line (obtained via Mathematica) is only valid for −3 < n < 1; otherwise, the

variance is undefined.
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However, the result is numerically unstable if n is an integer in this range, since the

function Γ(n−1) in the numerator goes to infinity if n−1 is 0 or a negative integer. Exact

integer values of n arise commonly in studies of scale-free cosmologies (EdS background

and power-law power spectrum), so it is convenient to have a closed-form expression for

the normalization of such a power spectrum, especially for generating initial conditions

for N-body simulations.

The σ2(R) function itself is perfectly smooth and finite in this range, as seen in

Fig. B.1.
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Figure B.1: σ2(1) versus power-law index n using Eq. B.1. For plotting purposes, we

avoided exact integers in the n range.

So, to find a numerically stable variant of the above expression, we need to re-write

it to avoid evaluating Γ(n−1) at negative integers.
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Using some properties of the Γ function (DLMF, Section 5.5), we can arrive at the

following expressions, each of which is numerically stable around even or odd integer poles:

Even poles (n = 0,−2)

σ
2(R) =

[
9R−n−32−n−1

π2(n−3)

][
(n + 1)sin

(
πn
2

)
Γ(n−1)

]
=

[
9R−n−32−n−1

π2(n−3)

][
−(n + 1)π

2Γ(2−n)
sec
(

πn
2

)]
(B.2)

Odd pole (n =−1)

σ
2(R) =

[
9R−n−32−n−1

π2(n−3)

][
sin
(

πn
2

)
Γ(n + 2)

n(n−1)

]
(B.3)

It’s worth noting that these expressions are exact; we have not used any approxima-

tions or Taylor expansions. Each is simply more convenient to evaluate numerically near

a given pole. Because of this, the transition point between functions is basically arbitrary;

it’s convenient to round to the nearest pole and check if it’s even or odd.

Table B.1 compares the values of σ2(8) computed with the “naive” form from Math-

ematica (Eq. B.1) with the “stable” forms Eqs. B.2 & B.3. The spot-checks in the areas

where the naive, even-pole, and odd-pole forms are all valid show that the identities were

implemented correctly.

These stable expressions for σ2(R) are used by the Abacus initial conditions genera-

tor1 when requesting a power-law cosmology.

1https://github.com/lgarrison/zeldovich-PLT
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Naive Even Odd Stable

n

-2.90 0.432508 0.432508 0.432508 0.432508

-2.50 0.0474965 0.0474965 0.0474965 0.0474965

-2.00 -inf 0.0119366 inf 0.0119366

-1.00 nan 0 0.00178104 0.00178104

0.00 nan 0.000466274 nan 0.000466274

0.75 0.000392073 0.000392073 0.000392073 0.000392073

Table B.1:: Numerical comparison of analytically-equivalent expressions for σ2
8 . Note how

all except “Stable” fail at some integer n. The stable result is formed by taking the “Even”

result near even n and “Odd” result near odd n.
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Appendix C

Importance Sampling for the

Covariance of the 2PCF

C.1 Abstract

The Gaussian part of the covariance of the two-point correlation function can be expressed

as the auto-convolution of the 2PCF which can be computed with Monte Carlo integration.

We derive an importance sampling kernel that accelerates the convergence of this integral.

C.2 Gaussian Covariance of the 2PCF

We define the two-point correlation function (2PCF) as the autocorrelation of the density

contrast δ (r):

ξ (s) =
1
V

∫
d3rδ (r + s)δ (r), (C.1)
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where we are working in a periodic domain of volume V . We define the covariance of ξ

with respect to the two separations s1, s2 as

C12 = 〈ξ (s1)ξ (s2)〉−〈ξ (s1)〉〈ξ (s2)〉, (C.2)

where the expectation values are taken with respect to different realizations of the initial

conditions.

Substituting Eq. C.1 into Eq. C.2 and grouping δ terms,

C12 =
1

V 2

∫
d3r1

∫
d3r2 〈δ (r1)δ (r1 + s1)δ (r2)δ (r2 + s2)〉−〈ξ (s1)〉〈ξ (s2)〉, (C.3)

where we have brought the expectation value inside the integrals. Note that 〈ξ (s)〉= ξ (s).

The expectation of the product of four Gaussian deviates can be expanded by Wick’s

theorem:

〈δ (r1)δ (r1 + s1)δ (r2)δ (r2 + s2)〉= 〈δ (r1)δ (r1 + s1)〉〈δ (r2)δ (r2 + s2)〉

+ 〈δ (r1)δ (r2)〉〈δ (r1 + s1)δ (r2 + s2)〉

+ 〈δ (r1)δ (r2 + s2)〉〈δ (r1 + s1)δ (r2)〉

= ξ (s1)ξ (s2)

+ ξ (r1− r2)ξ (s1− s2− (r2− r1))

+ ξ (s2− (r1− r2))ξ (s1− (r2− r1)),

(C.4)

where we have used ξ (s) = 〈δ (r)δ (r + s)〉 which is equivalent to Eq. C.1 assuming homo-

geneity.

Working term by term, we substitute back into the double integral in Eq. C.3:

1
V 2

∫
d3r1

∫
d3r2 ξ (s1)ξ (s2) = ξ (s1)ξ (s2). (C.5)

We immediately see that this cancels the second term in Eq. C.3.
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The second term becomes

1
V 2

∫
d3r1

∫
d3r2 ξ (r1− r2)ξ (s1− s2− (r2− r1)). (C.6)

We now make a change of integration variables: s′ ≡ r2− r1 and ∆12 ≡ s1− s2:

1
V 2

∫
d3r1

∫
d3s′ ξ (s′)ξ (∆12− s′), (C.7)

where we have used ξ (s) = ξ (−s). The origin of the inner integral is shifted by −r1, but

in a periodic box this has no effect, so the integral is still over the same volume. This

decouples the two integrals, so the outer integral resolves to a factor of V .

The third term in Eq. C.4 gives a similar result to the second (Eq. C.7), with the

only difference being the replacement of ∆12 by Σ12 = s1 + s2. Later, in the bin-averaging

process, these two terms will become identical, but we will not explicitly show that here.

In summary, thus far we have

C12 =
1
V

∫
d3s′ ξ (s′)ξ (∆12− s′)+

1
V

∫
d3s′ξ (s′)ξ (Σ12− s′). (C.8)

Both of these integrals are 3D auto-convolutions of ξ . We will compute these integrals

with Monte Carlo sampling in the next section.

C.3 Monte Carlo Integration

We wish to compute convolution integrals of the form

(ξ ⊗ξ )(s) =
∫

d3s′ ξ (s′)ξ (s− s′). (C.9)

Since we may be interested in covariance on small scales and with non-uniform binning,

we will approach this integral with Monte Carlo sampling.
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We can write the 3D integral in spherical coordinates using s as the azimuthal axis

without loss of generality:

(ξ ⊗ξ )(s) =
∫ 2π

0
dφ

∫ S

0
ds′
∫ 1

−1
dµ s′2ξ (s′)ξ (s− s′), (C.10)

where µ = cos(θ) and θ is the polar angle. S is the maximum radius, which we will

eventually take to infinity but leave as a bookkeeping notation for now.

For brevity, we will only consider the isotropic case ξ (s) = ξ (|s|) in the rest of this

appendix. In terms of the integration variables, |s′| = s′ and |s− s′| =
√

s2 + s′2−2ss′µ .

We can thus resolve the φ integral to 2π:

(ξ ⊗ξ )(s) = 2π

∫ S

0
ds′
∫ 1

−1
dµ s′2ξ (s′)ξ

(√
s2 + s′2−2ss′µ

)
. (C.11)

If we consider the likely form of ξ (s), the challenge of computing this integral with

Monte Carlo sampling becomes clear. To zeroth order, ξ (s) ∝ 1/s2, leading to

(ξ ⊗ξ )(s) ∝

∫ S

0
ds′
∫ 1

−1
dµ s′2

1
s′2

1
s2 + s′2−2ss′µ

. (C.12)

The first two terms in the integrand cancel, leaving all of the integrand weight to occur

near the pole s′2 + s′2−2ss′µ = 0, where s = s′.

To efficiently evaluate this integral, we would like to sample (s′,µ) from 1/(s2 + s′2−

2ss′µ) rather than a uniform distribution, such that more samples appear near the pole,

thus suppressing the Monte Carlo variance. This is the idea of importance sampling.

First, let us define

g(s′,µ) =
1

s2 + s′2−2ss′µ
(C.13)

as our target importance sampling kernel. This is a 2D (unnormalized) joint probability

distribution function that we can rewrite as the product of a marginalized and a condi-
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tional 1D distribution:

g(s′,µ) = g(s′|µ)g(µ) = g(µ|s′)g(s′). (C.14)

We are free to choose either form based on numerical convenience. We will try both to

see if one is more convenient.

Let us first consider the marginal in the second form:

g(s′) =
∫ 1

−1
dµ g(s′,µ) =

1
2ss′

log
[

(s + s′)2

(s′− s)2

]
. (C.15)

This is a closed form; now we need to sample from it. We will try to do so with a

probability integral transform: calculating the cumulative distribution function (CDF)

g(< s′), setting it equal to a uniform variable X , and solving for s′.

The CDF has a closed form, but is not invertible:

g(< s′) =
2
π

[
−Li2

(
−s′

s

)
+ Li2

(
s′

s

)]
, (C.16)

where Li2 is the dilogarithm. There is no clear way to invert the above equation for s′, so

we will not bother to compute the conditional g(µ|s′).

The marginal in the first form of Eq. C.14 is:

g(µ) =
∫

∞

0
ds′ g(s′,µ) =

π− cos−1(µ)

s′
√

1−µ2
. (C.17)

The CDF is

g(< µ) =
cos−1(µ)2 + 2π sin−1(µ)

π2 . (C.18)

This is invertible, unlike g(< s′):

g(< µ) =
cos−1(µ)2 + 2π sin−1(µ)

π2 = X

µ =−cos(π
√

X) (C.19)
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Now let us try to sample from the associated marginal by computing the CDF:

g(< s′|µ) =
sin−1(µ)− tan−1[(−s′+ µs′)/(s′

√
1−µ2)]

π− cos−1(µ)
. (C.20)

Despite appearances, this too is invertible:

g(< s′|µ) = X

s′ = s
(

µ +
√

1−µ2 tan[(π− cos−1(µ))X− sin−1(µ)]

)
. (C.21)

Thus, combining Eqs. C.19 and C.21, we have a fully analytic mapping from the unit

square to our desired importance sampling kernel g(s,µ). Testing this sampling kernel on

simulation data yields nearly a factor of 600 in variance reduction.

In summary, this importance sampling kernel maps an infinite domain with a pole to

a smooth, finite domain. The result is nearly 600× faster integral convergence. Further-

more, the coordinate mapping is fully analytic, so Sobol sampling and other techniques

that surpass Monte Carlo sampling in variance reduction should now apply. While we

have only considered the isotropic case in the above, extension to the anisotropic case

may be possible. Applying bin selection operators to compute the binned covariance (and

not just the point-wise covariance) is a natural next step in this work.
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Lagrangian Perturbation Theory for

Initial Conditions

Initial conditions codes for cosmological N-body simulations typically use Lagrangian per-

turbation theory (LPT; Zel’dovich 1970) to generate particle displacements and velocities

from an initial homogeneous lattice configuration. In linear perturbation theory, the spa-

tial and temporal parts of this problem are decoupled such that the particle displacements

can be written as:

ψ(a,q) = D(a)ψ(q), (D.1)

where a is the scale factor, D(a) is the linear growth factor and ψ(q) is the displacement

for the particle with initial (lattice) location q. This initial location q is also known as

the Lagrangian coordinate.

The linear growth factor D(a) is readily obtained through integration of the linear

growth equation. In this appendix, we will focus instead on how the spatial part ψ(q) is
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obtained.

The most common method is to solve Poisson’s equation in Fourier space:

ψ(k) =− ik
k2 δ (k), (D.2)

ψ(q) = F−1[ψ(k)], (D.3)

where δ = ρ/ρ̄ − 1 is the overdensity with ρ as the density and ρ̄ as the mean density,

k is the wavevector with amplitude k, and i is the imaginary unit. The inverse Fourier

transform is indicated by F−1. This is typically taken as a starting point in most papers

on initial conditions (e.g. Garrison et al. 2016, Chapter 4 of this thesis). The purpose of

this appendix is to demonstrate pedagogically how Equation D.2 arises.

LPT begins with the ansatz that all density fluctuations arise from displacement of

mass elements from their initial locations q at t = 0 (or z = ∞) to their current locations

x = q + ψ(q). (D.4)

x is known as the Eulerian position.

We can follow the evolution of Eulerian density δ by local conservation of mass:

ρdx = ρLdq

ρ̄(1 + δ )dx = ρ̄L(1 + δL)dq

(1 + δ )dx = dq, (D.5)

where ρL and δL are the densities in the Lagrangian frame. To arrive at the last expression,

we used ρ̄ = ρ̄L by global conservation of mass, and δL = 0 from our anzatz that all

Eulerian density fluctuations arise from displacements such that density is uniform in the

Lagrangian frame.
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We wish to find a set of displacements q that will produce Eulerian density δ . To do

so, we compute the Jacobian of the mapping from Lagrangian to Eulerian coordinates:

J ≡
∣∣∣∣ dxi

dq j

∣∣∣∣ ,
=

∣∣∣∣d(qi + ψi)

dq j

∣∣∣∣ ,
=

∣∣∣∣δi j +
dψi

dq j

∣∣∣∣ , (D.6)

where we used Equation D.4 in the second line and δi j is the Kronecker delta. The

Jacobian matrix in D.6 is also known as the ?.

From Equation D.5 and the definition of the Jacobian, we also have

1 + δ = J−1. (D.7)

Now we apply the perturbative approximation dψ/dq� 1 and evaluate the determi-

nant in Equation D.6. To first order, only the diagonal terms in the Jacobian survive due

to the Kronecker delta:∣∣∣∣δi j +
dψi

dq j

∣∣∣∣≈ (1 +
dψ0

dq0

)(
1 +

dψ1

dq1

)(
1 +

dψ2

dq2

)
≈ 1 +

dψ0

dq0
+

dψ1

dq1
+

dψ2

dq2

≈ 1 + ∇q ·ψ (D.8)

Using Equation D.7 to connect this to the density, we have

1 + δ ≈ 1
1 + ∇ ·ψ

,

δ ≈−∇ ·ψ, (D.9)

where we used the Taylor approximation (1+x)−1 ≈ (1−x) for small x (thus only keeping

terms to first order as we did in Equation D.8). Thus, to linear order, the Eulerian density
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field is given by the divergence of the Lagrangian displacement field. Intuitively, regions

of particle convergence will be regions of high density, while regions of particle divergence

will be regions of low density.

How do we invert Equation D.9 to get a set of displacements from a density field?

Now we can apply Poisson’s equation and assume an irrotational field:

∇
2
φ = 4πGρ̄δ , (D.10)

∇ · (∇φ)≈−4πGρ̄(∇ ·ψ),

∇φ ≈−4πGρ̄ψ, (D.11)

so the gradient of the potential gives the Lagrangian displacements. The potential is given

by Equation D.10 which is easily solved in Fourier space:

φ(k) =−4πGρ̄δ (k)

k2 . (D.12)

Combining this with Equation D.11 in Fourier space yields:

−4πGρ̄ψ(k) =−ikφ(k),

−4πGρ̄ψ(k) = ik
4πGρ̄δ (k)

k2 ,

ψ(k) =− ik
k2 δ (k), (D.13)

which is Equation D.2, our desired result.
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The RR Term in Particle

Auto-Correlations

E.1 RR in Unweighted Clustering Statistics

When computing a two-point correlation function estimator like ξ (r) = DD/RR−1, the

RR term can be computed analytically if the domain is a periodic box. Often, this is done

as

RRi = NViρ̄ (E.1)

= NVi
N
L3 (E.2)

where RRi is the expected number of random-random pairs in bin i, N is the total number

of points, Vi is the volume (or volume or area if 2D) of bin i, L is the box size, and ρ̄ is

the average density in the box.

However, using ρ̄ = N/L3 is only correct for continuous fields, not sets of particles.
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When sitting on a particle, only N−1 particles are available to be in a bin at some non-

zero distance. The remaining particle is the particle you’re sitting on, which is always at

distance 0. Thus, the correct expression is

RRi = NVi
N−1

L3 . (E.3)

Using density N instead of N−1 introduces a bias of order 1/N into the estimator.

We can easily check this empirically. Consider generating a set of 10 particles with in-

dependent, uniformly-random positions in a box of unit size. Because their positions are

independent and random, we should measure a correlation function of zero. Of course,

for any given realization, we will see large Poisson fluctuations, so we can repeat this

experiment 100K times to boost the signal-to-noise.

Executing this experiment with four evenly spaced bins from 0.1 to 0.4 yields:

• DD/RR using density N: [0.89871,0.89998,0.90135,0.89938]

• DD/RR using density N−1: [0.99857,0.99998,1.00151,0.99931]

Thus, we see that density of N yields a 1/N = 10% biased answer, while N−1 yields an

unbiased answer.

Of course, this is a tiny correction for large N problems, but important for small N.

When comparing results from different correlation function codes, this may be one source

of systematic discrepancy.

Cross-correlations of two different particle sets don’t suffer from this problem; the

particle you’re sitting on is never part of the set of particles under consideration for

pair-making.
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This N − 1 correction is implemented in the Corrfunc code Sinha & Garrison

(2017b).

E.2 RR in Weighted Clustering Statistics

We can extend the above discussion to weighted correlation functions in which each par-

ticle is assigned a weight, and the pair weight is taken as the product of the particle

weights.

Let w j be the weight of particle j, and W be the sum of the weights. The correspon-

dence to an “unclustered” distribution is less clear than in the uniform case, but we will

define it as the case of N particles uniformly distributed, where each is assigned the mean

weight w̄. We thus have

RRi =
N

∑
j=1

w̄(W − w̄)
Vi

L3

= (W 2− w̄W )
Vi

L3

= W 2
(

1− 1
N

)
Vi

L3 . (E.4)

When the particles all have w j = 1, then W = N and we recover the unweighted result

from above.

Alternatively, we could define the unclustered distribution by redistributing the par-

ticles uniformly but preserve their individual weights. In this case, we would find

RRi =
N

∑
j=1

w j(W −w j)
Vi

L3 (E.5)

=

(
W 2−

N

∑
j=1

w2
j

)
Vi

L3 . (E.6)
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One should probably define the unclustered distribution based on the physical mean-

ing of the assigned weights. But in most practical cases, this can be ignored unless N is

small or the variance of the weights is large.
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Supplement Series, 195, 4

Nelder, J. A., & Mead, R. 1965, The Computer Journal, 7, 308

Oort, J. H. 1983, Annual Review of Astronomy and Astrophysics, 21, 373

Padmanabhan, N., & White, M. 2009, Phys. Rev. D, 80, 063508

Padmanabhan, N., Xu, X., Eisenstein, D. J., et al. 2012, MNRAS, 427, 2132

Percival, W. J., & White, M. 2009, MNRAS, 393, 297

Perlmutter, S., Aldering, G., Goldhaber, G., et al. 1999, ApJ, 517, 565

Perryman, M. A. C., Brown, A. G. A., Lebreton, Y., et al. 1998, A&A, 331, 81

Pines, D. 1964, Elementary excitations in solids: lectures on phonons, electrons, and

plasmons, Vol. 5 (WA Benjamin)

Planck Collaboration. 2016, A&A, doi:10.1051/0004-6361/201525830

Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2014, A&A, 571, A16

Planck Collaboration, Aghanim, N., Akrami, Y., et al. 2018, arXiv e-prints,

arXiv:1807.06209

Plummer, H. C. 1911, MNRAS, 71, 460

Potter, D., Stadel, J., & Teyssier, R. 2016, ArXiv e-prints, arXiv:1609.08621

Potter, D., Stadel, J., & Teyssier, R. 2017, Computational Astrophysics and Cosmology,

4, 2

Powell, M. J. D. 1964, The Computer Journal, 7, 155

264



REFERENCES

Power, C., Robotham, A. S. G., Obreschkow, D., Hobbs, A., & Lewis, G. F. 2016,

MNRAS, 462, 474

Preskill, J., Wise, M. B., & Wilczek, F. 1983, Physics Letters B, 120, 127

Quinn, T., Katz, N., Stadel, J., & Lake, G. 1997, arXiv e-prints, astro

Reddick, R. M., Wechsler, R. H., Tinker, J. L., & Behroozi, P. S. 2013, ApJ, 771, 30

Reed, D. S., Smith, R. E., Potter, D., et al. 2013, MNRAS, 431, 1866

Rein, H., & Spiegel, D. S. 2015, MNRAS, 446, 1424

Rein, H., & Tamayo, D. 2015, MNRAS, 452, 376

Riebe, K., Partl, A. M., Enke, H., et al. 2013, Astronomische Nachrichten, 334, 691

Riess, A. G., Casertano, S., Yuan, W., Macri, L. M., & Scolnic, D. 2019, arXiv e-prints,

arXiv:1903.07603

Riess, A. G., Filippenko, A. V., Challis, P., et al. 1998, AJ, 116, 1009

Rubin, V. C., Ford, W. K., J., & Thonnard, N. 1980, ApJ, 238, 471

Schaller, M. 2015, PhD thesis, Durham University, UK, doi:10.5281/zenodo.49878

Schmittfull, M., Baldauf, T., & Zaldarriaga, M. 2017, Phys. Rev. D, 96, 023505

Schmittfull, M., Feng, Y., Beutler, F., Sherwin, B., & Chu, M. Y. 2015, Phys. Rev. D,

92, 123522

Schneider, A., & Teyssier, R. 2015, JCAP, 12, 049

Schneider, A., Teyssier, R., Potter, D., et al. 2016a, JCAP, 4, 047

—. 2016b, JCAP, 4, 047

Scoccimarro, R. 1998, MNRAS, 299, 1097

Seo, H.-J., Beutler, F., Ross, A. J., & Saito, S. 2016, MNRAS, 460, 2453

Seo, H.-J., Eckel, J., Eisenstein, D. J., et al. 2010, ApJ, 720, 1650

Shapley, H. 1933, Proceedings of the National Academy of Science, 19, 591

Sheth, R. K., & Tormen, G. 1999, MNRAS, 308, 119

265



REFERENCES

Sinha, M., & Garrison, L. 2017a, Corrfunc: Blazing fast correlation functions on the

CPU, Astrophysics Source Code Library, ascl:1703.003

—. 2017b, Corrfunc: Blazing fast correlation functions on the CPU, Astrophysics Source

Code Library, ascl:1703.003

Smoot, G. F., Bennett, C. L., Kogut, A., et al. 1992, ApJ, 396, L1

Spergel, D., Gehrels, N., Baltay, C., et al. 2015, ArXiv e-prints, arXiv:1503.03757

Spergel, D. N., Verde, L., Peiris, H. V., et al. 2003, The Astrophysical Journal Supple-

ment Series, 148, 175

Springel, V. 2005, Mon. Not. R. Astron. Soc., 364, doi:10.1111/j.1365-2966.2005.09655.x

Springel, V., White, S. D. M., Jenkins, A., et al. 2005, Nature, 435, 629

Springel, V., Pakmor, R., Pillepich, A., et al. 2018, MNRAS, 475, 676

Stone, J. M., Gardiner, T. A., Teuben, P., Hawley, J. F., & Simon, J. B. 2008, The

Astrophysical Journal Supplement Series, 178, 137

Takahashi, R., Sato, M., Nishimichi, T., Taruya, A., & Oguri, M. 2012, ApJ, 761, 152

Tanaka, S., Yoshikawa, K., Minoshima, T., & Yoshida, N. 2017, ApJ, 849, 76

Tassev, S., & Zaldarriaga, M. 2012, Journal of Cosmology and Astro-Particle Physics,

2012, 006

Tassev, S., Zaldarriaga, M., & Eisenstein, D. J. 2013, JCAP, 6, 036

Teyssier, R. 2001, Astron. Astrophys., 385, doi:10.1051/0004-6361:20011817

Teyssier, R. 2010, RAMSES: A new N-body and hydrodynamical code, ascl:1011.007

Tinker, J., Kravtsov, A. V., Klypin, A., et al. 2008, ApJ, 688, 709

Tram, T., Brandbyge, J., Dakin, J., & Hannestad, S. 2019, Journal of Cosmology and

Astro-Particle Physics, 2019, 022

Troxel, M. A., & Ishak, M. 2015, Phys. Rep., 558, 1

van Daalen, M. P., Schaye, J., Booth, C. M., & Dalla Vecchia, C. 2011, MNRAS, 415,

3649

van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, Computing in Science and

Engineering, 13, 22

266



REFERENCES

Wang, Y. 2008, Journal of Cosmology and Astro-Particle Physics, 2008, 021

Warren, M. S. 2013, ArXiv e-prints, arXiv:1310.4502

Wechsler, R. H., & Tinker, J. L. 2018, Annual Review of Astronomy and Astrophysics,

56, 435

Weinberg, D. H., Mortonson, M. J., Eisenstein, D. J., et al. 2013, Phys. Rep., 530, 87

White, M., Tinker, J. L., & McBride, C. K. 2014, MNRAS, 437, 2594

Wibking, B. D., Salcedo, A. N., Weinberg, D. H., et al. 2019, MNRAS, 484, 989

Yoshikawa, K., Yoshida, N., & Umemura, M. 2013, ApJ, 762, 116

Yuan, S., & Eisenstein, D. J. 2019, MNRAS, 486, 708

Yuan, S., Eisenstein, D. J., & Garrison, L. H. 2018, MNRAS, 478, 2019

Zehavi, I., Zheng, Z., Weinberg, D. H., et al. 2011, ApJ, 736, 59

Zel’dovich, Y. B. 1970, A&A, 5, 84

Zhai, Z., Tinker, J. L., Becker, M. R., et al. 2018, ArXiv e-prints, arXiv:1804.05867

Zhang, H., Eisenstein, D. J., Garrison, L. H., & Ferrer, D. W. 2017, arXiv e-prints,

arXiv:1712.05787

Zheng, Z., Coil, A. L., & Zehavi, I. 2007, ApJ, 667, 760

Zheng, Z., Berlind, A. A., Weinberg, D. H., et al. 2005, ApJ, 633, 791

Zhu, H.-M., Yu, Y., Pen, U.-L., Chen, X., & Yu, H.-R. 2017, Phys. Rev. D, 96, 123502

267


	Abstract
	Acknowledgments
	Dedication
	Introduction
	The Concordance Model of Cosmology
	Large-Scale Structure as a Probe of Cosmology
	Overview
	Growth of Structure and Redshift-Space Distortions
	Weak Lensing
	Halo and Galaxy Bias
	Baryon Acoustic Oscillations

	N-body Simulations as a Modeling Tool for LSS
	Overview
	Initial Conditions
	N-body Force Solvers
	Beyond Cosmological N-body
	Why N-body?

	Thesis Outline

	Abacus
	Overview
	Force Solver
	Intuition: Abacus vs. PM/Tree
	Slab Pipeline
	GPU Data Model
	Top-level Interface
	Memory Allocation
	Thread Affinity and NUMA
	Parallel Implementation
	On-the-fly Group Finding
	In-Memory Operation (Ramdisk)
	Outputs
	Analysis Tools
	Build System
	Cluster Commissioning
	Abacus Hardware
	Overview
	Disk
	GPUs: Tesla vs GeForce
	The Abacus Development Computer Cluster

	Notable Simulations
	Current Limitations
	Looking Forward
	Public Release
	Simulation Campaigns


	A High-Fidelity Realization of the Euclid Code Comparison N-body Simulation with Abacus
	Introduction
	Abacus
	Performance: Design
	Performance: Results

	Code Comparison Results
	Power Spectrum
	Two-Point Correlation Function

	Validation
	Linear Theory
	Time Stepping
	Softening
	Far-field Force
	Near-field Force

	Discussion

	Improving Initial Conditions for Cosmological N-Body Simulations
	Introduction
	Particle Linear Theory
	PLT formalism
	Discreteness effects and the fluid limit
	Numerical computation of dynamical matrix
	Abacus: N-body cosmology to machine precision

	Corrections to Initial Conditions
	Spatial transients
	Temporal transients
	Growth rates and rescaling

	Second-order Lagrangian Perturbation Theory in Configuration Space
	Theory
	Implementation
	Accuracy
	Implementation caveats

	Cosmological Results
	Simulation details
	Power spectrum
	Halo mass function
	Halo clustering
	Glass initial conditions

	Conclusions

	Abacus Cosmos: A Suite of Cosmological N-body Simulations
	Introduction
	Abacus: fast and precise N-body cosmology
	Overview
	Hardware and performance
	Force softening

	Simulation Details
	Initial conditions
	Input power spectrum
	Code parameters

	Cosmology Grid Design
	Catalogs
	Data products: halos and power spectra
	Friends-of-friends
	Rockstar
	Power spectra
	Plummer vs. spline data products
	Example Python Interfaces

	Validation
	CosmicEmu and HaloFit
	Convergence

	Summary

	Generating Approximate Halo Catalogs for Blind Challenges in Precision Cosmology
	Introduction
	Warping
	Outline
	Initial Condition Residuals
	Halo Property Rescaling
	Transfer Function
	Redshift Space: Residuals, Velocity Dispersion, and Transfer Function

	Results
	Outline
	Real Space
	Redshift Space
	Transferring the Transfer Function

	Discussion and Future Directions
	Eulerian Transfer: Failed Warping Procedure

	Conclusions
	Scale-Free Simulations
	Background
	Simulations
	Two-Point Correlation Function
	Power Spectrum
	Upcoming Work

	Numerically Stable Computation of 8 with a Power-Law Power Spectrum
	Importance Sampling for the Covariance of the 2PCF
	Abstract
	Gaussian Covariance of the 2PCF
	Monte Carlo Integration

	Lagrangian Perturbation Theory for Initial Conditions
	The RR Term in Particle Auto-Correlations
	RR in Unweighted Clustering Statistics
	RR in Weighted Clustering Statistics

	References

